mlx-examples/whisper/mlx_whisper/whisper.py

268 lines
8.5 KiB
Python
Raw Normal View History

2023-12-01 03:08:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 00:17:26 +08:00
import base64
import gzip
import math
from dataclasses import dataclass
from typing import Union
2023-11-30 00:17:26 +08:00
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .decoding import decode as decode_function
from .decoding import detect_language as detect_language_function
@dataclass
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
inv_timescales = mx.exp(-log_timescale_increment * mx.arange(channels // 2))
scaled_time = mx.arange(length)[:, None] * inv_timescales[None, :]
return mx.concatenate([mx.sin(scaled_time), mx.cos(scaled_time)], axis=1)
2023-12-15 08:56:50 +08:00
2023-11-30 00:17:26 +08:00
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = nn.Linear(n_state, n_state)
self.key = nn.Linear(n_state, n_state, bias=False)
self.value = nn.Linear(n_state, n_state)
self.out = nn.Linear(n_state, n_state)
def __call__(
self,
x,
xa=None,
mask=None,
kv_cache=None,
):
q = self.query(x)
if xa is None:
k = self.key(x)
v = self.value(x)
if kv_cache is not None:
k = mx.concatenate([kv_cache[0], k], axis=1)
v = mx.concatenate([kv_cache[1], v], axis=1)
elif kv_cache is None:
k = self.key(xa)
v = self.value(xa)
else:
k, v = kv_cache
wv, qk = self.qkv_attention(q, k, v, mask)
return self.out(wv), (k, v), qk
2023-11-30 00:17:26 +08:00
def qkv_attention(self, q, k, v, mask=None):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.reshape(*q.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3) * scale
k = k.reshape(*k.shape[:2], self.n_head, -1).transpose(0, 2, 3, 1) * scale
v = v.reshape(*v.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3)
qk = q @ k
if mask is not None:
qk = qk + mask[:n_ctx, :n_ctx]
qk = qk.astype(mx.float32)
2023-11-30 00:17:26 +08:00
w = mx.softmax(qk, axis=-1).astype(q.dtype)
out = (w @ v).transpose(0, 2, 1, 3)
out = out.reshape(n_batch, n_ctx, n_state)
return out, qk
2023-11-30 00:17:26 +08:00
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = nn.LayerNorm(n_state)
2023-11-30 00:17:26 +08:00
self.cross_attn = (
MultiHeadAttention(n_state, n_head) if cross_attention else None
)
self.cross_attn_ln = nn.LayerNorm(n_state) if cross_attention else None
2023-11-30 00:17:26 +08:00
n_mlp = n_state * 4
self.mlp1 = nn.Linear(n_state, n_mlp)
self.mlp2 = nn.Linear(n_mlp, n_state)
self.mlp_ln = nn.LayerNorm(n_state)
2023-11-30 00:17:26 +08:00
def __call__(self, x, xa=None, mask=None, kv_cache=None):
kv, cross_kv = kv_cache if kv_cache else (None, None)
y, kv, _ = self.attn(self.attn_ln(x), mask=mask, kv_cache=kv)
2023-11-30 00:17:26 +08:00
x += y
cross_qk = None
2023-11-30 00:17:26 +08:00
if self.cross_attn:
y, cross_kv, cross_qk = self.cross_attn(
self.cross_attn_ln(x), xa, kv_cache=cross_kv
)
2023-11-30 00:17:26 +08:00
x += y
2024-03-31 04:13:58 +08:00
x = x + self.mlp2(nn.gelu(self.mlp1(self.mlp_ln(x))))
return x, (kv, cross_kv), cross_qk
2023-11-30 00:17:26 +08:00
class AudioEncoder(nn.Module):
def __init__(
2023-12-15 08:56:50 +08:00
self,
n_mels: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
dtype: mx.Dtype = mx.float16,
2023-11-30 00:17:26 +08:00
):
super().__init__()
self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
2023-12-12 23:37:35 +08:00
self._positional_embedding = sinusoids(n_ctx, n_state).astype(dtype)
2023-11-30 00:17:26 +08:00
self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
self.ln_post = nn.LayerNorm(n_state)
2023-11-30 00:17:26 +08:00
def __call__(self, x):
2024-03-31 04:13:58 +08:00
x = nn.gelu(self.conv1(x))
x = nn.gelu(self.conv2(x))
2023-11-30 00:17:26 +08:00
assert x.shape[1:] == self._positional_embedding.shape, "incorrect audio shape"
x = x + self._positional_embedding
for block in self.blocks:
x, _, _ = block(x)
2023-11-30 00:17:26 +08:00
x = self.ln_post(x)
return x
class TextDecoder(nn.Module):
def __init__(
2023-12-15 08:56:50 +08:00
self,
n_vocab: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
dtype: mx.Dtype = mx.float16,
2023-11-30 00:17:26 +08:00
):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = mx.zeros((n_ctx, n_state))
self.blocks = [
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
for _ in range(n_layer)
]
self.ln = nn.LayerNorm(n_state)
2023-12-15 08:56:50 +08:00
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(
dtype
)
2023-11-30 00:17:26 +08:00
def __call__(self, x, xa, kv_cache=None):
"""
x : mx.array, shape = (batch_size, <= n_ctx)
the text tokens
xa : mx.array, shape = (batch_size, n_audio_ctx, n_audio_state)
the encoded audio features to be attended on
"""
offset = kv_cache[0][0][0].shape[1] if kv_cache else 0
x = (
self.token_embedding(x)
+ self.positional_embedding[offset : offset + x.shape[-1]]
)
if kv_cache is None:
kv_cache = [None] * len(self.blocks)
cross_qk = [None] * len(self.blocks)
2023-11-30 00:17:26 +08:00
for e, block in enumerate(self.blocks):
x, kv_cache[e], cross_qk[e] = block(
x, xa, mask=self._mask, kv_cache=kv_cache[e]
)
2023-11-30 00:17:26 +08:00
x = self.ln(x)
return self.token_embedding.as_linear(x), kv_cache, cross_qk
2023-11-30 00:17:26 +08:00
class Whisper(nn.Module):
2023-12-12 23:37:35 +08:00
def __init__(self, dims: ModelDimensions, dtype: mx.Dtype = mx.float16):
2023-11-30 00:17:26 +08:00
super().__init__()
self.dims = dims
self.encoder = AudioEncoder(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
2023-12-12 23:37:35 +08:00
dtype,
2023-11-30 00:17:26 +08:00
)
self.decoder = TextDecoder(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
2023-12-12 23:37:35 +08:00
dtype,
2023-11-30 00:17:26 +08:00
)
# use the last half among the decoder layers for time alignment by default;
# to use a specific set of heads, see `set_alignment_heads()` below.
all_heads = np.zeros(
(self.dims.n_text_layer, self.dims.n_text_head), dtype=bool
)
all_heads[self.dims.n_text_layer // 2 :] = True
self.alignment_heads = mx.array(np.asarray(all_heads.nonzero()).T)
def set_alignment_heads(self, dump: Union[bytes, np.ndarray]):
if isinstance(dump, np.ndarray):
self.alignment_heads = mx.array(dump)
elif isinstance(dump, bytes):
array = np.frombuffer(
gzip.decompress(base64.b85decode(dump)), dtype=bool
).copy()
mask = array.reshape(self.dims.n_text_layer, self.dims.n_text_head)
self.alignment_heads = mx.array(np.asarray(mask.nonzero()).T)
else:
raise ValueError(
f"Invalid type for `dump`: {type(dump)}. Expected a np.ndarray or base85-encoded bytes containing"
" alignment_head information"
)
2023-11-30 00:17:26 +08:00
def embed_audio(self, mel):
return self.encoder(mel)
def logits(self, tokens, audio_features):
return self.decoder(tokens, audio_features)[0]
def forward_with_cross_qk(self, mel, tokens):
logits, _, cross_qk = self.decoder(tokens, self.encoder(mel))
return logits, cross_qk
2023-11-30 00:17:26 +08:00
def __call__(self, mel, tokens):
return self.decoder(tokens, self.encoder(mel))[0]
@property
def is_multilingual(self):
2023-12-13 00:26:52 +08:00
return self.dims.n_vocab >= 51865
@property
def num_languages(self):
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
2023-11-30 00:17:26 +08:00
detect_language = detect_language_function
decode = decode_function