mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 02:53:41 +08:00
258 lines
9.1 KiB
Python
258 lines
9.1 KiB
Python
![]() |
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx.nn as nn
|
||
|
|
||
|
from .base import BaseModelArgs, KVCache, create_attention_mask
|
||
|
from .su_rope import SuScaledRotaryEmbedding
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ModelArgs(BaseModelArgs):
|
||
|
model_type: str = "phimoe"
|
||
|
vocab_size: int = 30000
|
||
|
hidden_size: int = 1024
|
||
|
intermediate_size: int = 4096
|
||
|
num_hidden_layers: int = 12
|
||
|
num_attention_heads: int = 16
|
||
|
num_key_value_heads: int = 16
|
||
|
max_position_embeddings: int = 2048
|
||
|
initializer_range: float = 0.02
|
||
|
rms_norm_eps: float = 1e-6
|
||
|
pad_token_id: Optional[int] = None
|
||
|
rope_traditional: bool = False
|
||
|
num_local_experts: int = 8
|
||
|
num_experts_per_tok: int = 2
|
||
|
attention_bias: bool = False
|
||
|
rope_theta: float = 10000.0
|
||
|
|
||
|
def __post_init__(self):
|
||
|
if self.num_key_value_heads is None:
|
||
|
self.num_key_value_heads = self.num_attention_heads
|
||
|
|
||
|
if self.rope_scaling:
|
||
|
required_keys = {"long_factor", "type"}
|
||
|
if not all(key in self.rope_scaling for key in required_keys):
|
||
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||
|
|
||
|
if self.rope_scaling["type"] not in ["longrope", "su", "linear"]:
|
||
|
print(
|
||
|
"[WARNING] rope_scaling 'type' currently only supports 'linear', 'su', and 'longrope'; setting rope scaling to false."
|
||
|
)
|
||
|
self.rope_scaling = None
|
||
|
|
||
|
|
||
|
class Attention(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
|
||
|
dim = args.hidden_size
|
||
|
self.n_heads = n_heads = args.num_attention_heads
|
||
|
assert args.num_key_value_heads is not None
|
||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||
|
|
||
|
head_dim = args.hidden_size // n_heads
|
||
|
self.scale = head_dim**-0.5
|
||
|
|
||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
|
||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||
|
|
||
|
rope_scale = 1.0
|
||
|
if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]:
|
||
|
self.rope = SuScaledRotaryEmbedding(
|
||
|
head_dim,
|
||
|
traditional=False,
|
||
|
base=args.rope_theta,
|
||
|
scale=rope_scale,
|
||
|
max_position_embeddings=args.max_position_embeddings,
|
||
|
original_max_position_embeddings=args.original_max_position_embeddings,
|
||
|
short_factor=args.rope_scaling["short_factor"],
|
||
|
long_factor=args.rope_scaling["long_factor"],
|
||
|
)
|
||
|
else:
|
||
|
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
||
|
assert isinstance(args.rope_scaling["factor"], float)
|
||
|
rope_scale = 1 / args.rope_scaling["factor"]
|
||
|
self.rope = nn.RoPE(
|
||
|
head_dim,
|
||
|
traditional=args.rope_traditional,
|
||
|
base=args.rope_theta,
|
||
|
scale=rope_scale,
|
||
|
)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
x: mx.array,
|
||
|
mask: Optional[mx.array] = None,
|
||
|
cache: Optional[KVCache] = None,
|
||
|
) -> mx.array:
|
||
|
B, L, D = x.shape
|
||
|
|
||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||
|
|
||
|
# Prepare the queries, keys and values for the attention computation
|
||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
|
|
||
|
if cache is not None:
|
||
|
queries = self.rope(queries, offset=cache.offset)
|
||
|
keys = self.rope(keys, offset=cache.offset)
|
||
|
keys, values = cache.update_and_fetch(keys, values)
|
||
|
else:
|
||
|
queries = self.rope(queries)
|
||
|
keys = self.rope(keys)
|
||
|
|
||
|
output = mx.fast.scaled_dot_product_attention(
|
||
|
queries, keys, values, scale=self.scale, mask=mask
|
||
|
)
|
||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||
|
return self.o_proj(output)
|
||
|
|
||
|
|
||
|
class PhiMoEBlockSparseTop2MLP(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.ffn_dim = args.intermediate_size
|
||
|
self.hidden_dim = args.hidden_size
|
||
|
|
||
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
||
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
||
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
||
|
|
||
|
self.act_fn = nn.GELU()
|
||
|
|
||
|
def __call__(self, hidden_states):
|
||
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(
|
||
|
hidden_states
|
||
|
)
|
||
|
current_hidden_states = self.w2(current_hidden_states)
|
||
|
return current_hidden_states
|
||
|
|
||
|
|
||
|
class PhiMoESparseMoeBlock(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.hidden_dim = args.hidden_size
|
||
|
self.ffn_dim = args.intermediate_size
|
||
|
self.num_experts = args.num_local_experts
|
||
|
self.top_k = args.num_experts_per_tok
|
||
|
|
||
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
||
|
self.experts = [PhiMoEBlockSparseTop2MLP(args) for _ in range(self.num_experts)]
|
||
|
|
||
|
def __call__(self, hidden_states):
|
||
|
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
||
|
hidden_states = hidden_states.reshape(-1, hidden_dim)
|
||
|
|
||
|
router_logits = self.gate(hidden_states)
|
||
|
routing_weights = mx.softmax(router_logits, axis=-1)
|
||
|
expert_indices = mx.argmax(routing_weights, axis=-1)
|
||
|
|
||
|
final_hidden_states = mx.zeros((batch_size * sequence_length, hidden_dim))
|
||
|
|
||
|
for expert_idx in range(self.num_experts):
|
||
|
expert_layer = self.experts[expert_idx]
|
||
|
expert_mask = expert_indices == expert_idx
|
||
|
if mx.sum(expert_mask) > 0:
|
||
|
expert_input = hidden_states[expert_mask]
|
||
|
expert_output = expert_layer(expert_input)
|
||
|
final_hidden_states = mx.where(
|
||
|
expert_mask[:, None], expert_output, final_hidden_states
|
||
|
)
|
||
|
|
||
|
final_hidden_states = final_hidden_states.reshape(
|
||
|
batch_size, sequence_length, hidden_dim
|
||
|
)
|
||
|
return final_hidden_states, router_logits
|
||
|
|
||
|
|
||
|
class PhiMoEDecoderLayer(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.hidden_size = args.hidden_size
|
||
|
|
||
|
self.self_attn = Attention(args)
|
||
|
self.block_sparse_moe = PhiMoESparseMoeBlock(args)
|
||
|
self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
|
self.post_attention_layernorm = nn.LayerNorm(
|
||
|
args.hidden_size, eps=args.rms_norm_eps
|
||
|
)
|
||
|
|
||
|
def __call__(self, hidden_states, attention_mask=None, position_ids=None):
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
|
||
|
hidden_states = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
|
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
return hidden_states, router_logits
|
||
|
|
||
|
|
||
|
class PhiMoEModel(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.args = args
|
||
|
self.padding_idx = args.pad_token_id
|
||
|
self.vocab_size = args.vocab_size
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(
|
||
|
args.vocab_size, args.hidden_size, self.padding_idx
|
||
|
)
|
||
|
self.layers = [PhiMoEDecoderLayer(args) for _ in range(args.num_hidden_layers)]
|
||
|
self.norm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
|
|
||
|
def __call__(self, input_ids, attention_mask=None, position_ids=None):
|
||
|
hidden_states = self.embed_tokens(input_ids)
|
||
|
|
||
|
for layer in self.layers:
|
||
|
hidden_states, _ = layer(hidden_states, attention_mask, position_ids)
|
||
|
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.args = args
|
||
|
self.model = PhiMoEModel(args)
|
||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||
|
|
||
|
def __call__(self, input_ids, attention_mask=None, position_ids=None):
|
||
|
hidden_states = self.model(input_ids, attention_mask, position_ids)
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
return logits
|
||
|
|
||
|
@property
|
||
|
def layers(self):
|
||
|
return self.model.layers
|
||
|
|
||
|
@property
|
||
|
def head_dim(self):
|
||
|
return self.args.hidden_size // self.args.num_attention_heads
|
||
|
|
||
|
def sanitize(self, weights):
|
||
|
# Remove unused precomputed rotary freqs
|
||
|
return {
|
||
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def n_kv_heads(self):
|
||
|
return self.args.num_key_value_heads
|