2023-12-08 18:14:11 +08:00
|
|
|
from typing import Optional
|
|
|
|
from dataclasses import dataclass
|
2023-12-09 23:41:15 +08:00
|
|
|
from transformers import BertTokenizer
|
|
|
|
from mlx.utils import tree_unflatten
|
2023-12-08 18:14:11 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
import argparse
|
|
|
|
import numpy
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs:
|
|
|
|
intermediate_size: int = 768
|
|
|
|
num_attention_heads: int = 12
|
|
|
|
num_hidden_layers: int = 12
|
|
|
|
vocab_size: int = 30522
|
|
|
|
attention_probs_dropout_prob: float = 0.1
|
|
|
|
hidden_dropout_prob: float = 0.1
|
|
|
|
layer_norm_eps: float = 1e-12
|
|
|
|
max_position_embeddings: int = 512
|
|
|
|
|
|
|
|
|
|
|
|
model_configs = {
|
|
|
|
"bert-base-uncased": ModelArgs(),
|
|
|
|
"bert-base-cased": ModelArgs(),
|
|
|
|
"bert-large-uncased": ModelArgs(
|
|
|
|
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
|
|
|
),
|
|
|
|
"bert-large-cased": ModelArgs(
|
|
|
|
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
|
|
|
),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-12-09 23:41:15 +08:00
|
|
|
class MultiHeadAttention(nn.Module):
|
2023-12-08 18:14:11 +08:00
|
|
|
"""
|
|
|
|
Minor update to the MultiHeadAttention module to ensure that the
|
|
|
|
projections use bias.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dims: int,
|
|
|
|
num_heads: int,
|
|
|
|
query_input_dims: Optional[int] = None,
|
|
|
|
key_input_dims: Optional[int] = None,
|
|
|
|
value_input_dims: Optional[int] = None,
|
|
|
|
value_dims: Optional[int] = None,
|
|
|
|
value_output_dims: Optional[int] = None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if (dims % num_heads) != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"The input feature dimensions should be divisible by the number of heads ({dims} % {num_heads}) != 0"
|
|
|
|
)
|
|
|
|
|
|
|
|
query_input_dims = query_input_dims or dims
|
|
|
|
key_input_dims = key_input_dims or dims
|
|
|
|
value_input_dims = value_input_dims or key_input_dims
|
|
|
|
value_dims = value_dims or dims
|
|
|
|
value_output_dims = value_output_dims or dims
|
|
|
|
|
|
|
|
self.num_heads = num_heads
|
2023-12-09 23:41:15 +08:00
|
|
|
self.query_proj = nn.Linear(query_input_dims, dims, True)
|
|
|
|
self.key_proj = nn.Linear(key_input_dims, dims, True)
|
|
|
|
self.value_proj = nn.Linear(value_input_dims, value_dims, True)
|
|
|
|
self.out_proj = nn.Linear(value_dims, value_output_dims, True)
|
2023-12-08 18:14:11 +08:00
|
|
|
|
|
|
|
def __call__(self, queries, keys, values, mask=None):
|
|
|
|
queries = self.query_proj(queries)
|
|
|
|
keys = self.key_proj(keys)
|
|
|
|
values = self.value_proj(values)
|
|
|
|
|
|
|
|
num_heads = self.num_heads
|
|
|
|
B, L, D = queries.shape
|
|
|
|
_, S, _ = keys.shape
|
|
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
|
|
|
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
# Dimensions are [batch x num heads x sequence x hidden dim]
|
|
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
|
|
scores = (queries * scale) @ keys
|
|
|
|
if mask is not None:
|
|
|
|
mask = self.converrt_mask_to_additive_causal_mask(mask)
|
|
|
|
mask = mx.expand_dims(mask, (1, 2))
|
|
|
|
mask = mx.broadcast_to(mask, scores.shape)
|
|
|
|
scores = scores + mask.astype(scores.dtype)
|
|
|
|
scores = mx.softmax(scores, axis=-1)
|
|
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
|
|
|
|
return self.out_proj(values_hat)
|
|
|
|
|
|
|
|
def converrt_mask_to_additive_causal_mask(
|
|
|
|
self, mask: mx.array, dtype: mx.Dtype = mx.float32
|
|
|
|
) -> mx.array:
|
|
|
|
mask = mask == 0
|
|
|
|
mask = mask.astype(dtype) * -1e9
|
|
|
|
return mask
|
|
|
|
|
|
|
|
|
2023-12-09 23:41:15 +08:00
|
|
|
class TransformerEncoderLayer(nn.Module):
|
2023-12-08 18:14:11 +08:00
|
|
|
"""
|
|
|
|
A transformer encoder layer with (the original BERT) post-normalization.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dims: int,
|
|
|
|
num_heads: int,
|
|
|
|
mlp_dims: Optional[int] = None,
|
|
|
|
layer_norm_eps: float = 1e-12,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
mlp_dims = mlp_dims or dims * 4
|
|
|
|
self.attention = MultiHeadAttention(dims, num_heads)
|
2023-12-09 23:41:15 +08:00
|
|
|
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
|
|
|
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
|
|
|
self.linear1 = nn.Linear(dims, mlp_dims)
|
|
|
|
self.linear2 = nn.Linear(mlp_dims, dims)
|
2023-12-08 18:14:11 +08:00
|
|
|
self.gelu = nn.GELU()
|
|
|
|
|
|
|
|
def __call__(self, x, mask):
|
|
|
|
attention_out = self.attention(x, x, x, mask)
|
|
|
|
add_and_norm = self.ln1(x + attention_out)
|
|
|
|
|
|
|
|
ff = self.linear1(add_and_norm)
|
|
|
|
ff_gelu = self.gelu(ff)
|
|
|
|
ff_out = self.linear2(ff_gelu)
|
|
|
|
x = self.ln2(ff_out + add_and_norm)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2023-12-09 23:41:15 +08:00
|
|
|
class TransformerEncoder(nn.Module):
|
2023-12-08 18:14:11 +08:00
|
|
|
def __init__(
|
|
|
|
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.layers = [
|
|
|
|
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
|
|
|
for i in range(num_layers)
|
|
|
|
]
|
|
|
|
|
|
|
|
def __call__(self, x, mask):
|
2023-12-09 23:41:15 +08:00
|
|
|
for layer in self.layers:
|
|
|
|
x = layer(x, mask)
|
2023-12-08 18:14:11 +08:00
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class BertEmbeddings(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.intermediate_size)
|
|
|
|
self.token_type_embeddings = nn.Embedding(2, config.intermediate_size)
|
|
|
|
self.position_embeddings = nn.Embedding(
|
|
|
|
config.max_position_embeddings, config.intermediate_size
|
|
|
|
)
|
|
|
|
self.norm = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
|
|
|
|
|
|
|
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
|
|
|
|
words = self.word_embeddings(input_ids)
|
|
|
|
position = self.position_embeddings(
|
|
|
|
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
|
|
|
|
)
|
|
|
|
token_types = self.token_type_embeddings(token_type_ids)
|
|
|
|
|
|
|
|
embeddings = position + words + token_types
|
|
|
|
return self.norm(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
class Bert(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
self.embeddings = BertEmbeddings(config)
|
|
|
|
self.encoder = TransformerEncoder(
|
|
|
|
num_layers=config.num_hidden_layers,
|
|
|
|
dims=config.intermediate_size,
|
|
|
|
num_heads=config.num_attention_heads,
|
|
|
|
)
|
|
|
|
self.pooler = nn.Linear(config.intermediate_size, config.vocab_size)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
input_ids: mx.array,
|
|
|
|
token_type_ids: mx.array,
|
|
|
|
attention_mask: mx.array | None = None,
|
|
|
|
) -> tuple[mx.array, mx.array]:
|
|
|
|
x = self.embeddings(input_ids, token_type_ids)
|
|
|
|
y = self.encoder(x, attention_mask)
|
|
|
|
return y, mx.tanh(self.pooler(y[:, 0]))
|
|
|
|
|
|
|
|
|
2023-12-09 23:41:15 +08:00
|
|
|
def load_model(bert_model: str, weights_path: str) -> tuple[Bert, BertTokenizer]:
|
|
|
|
# load the weights npz
|
|
|
|
weights = mx.load(weights_path)
|
|
|
|
weights = tree_unflatten(list(weights.items()))
|
|
|
|
# create and update the model
|
|
|
|
model = Bert(model_configs[bert_model])
|
|
|
|
model.update(weights)
|
|
|
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained(bert_model)
|
|
|
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
2023-12-08 18:14:11 +08:00
|
|
|
def run(bert_model: str, mlx_model: str):
|
2023-12-09 23:41:15 +08:00
|
|
|
model, tokenizer = load_model(bert_model, mlx_model)
|
|
|
|
|
2023-12-08 18:14:11 +08:00
|
|
|
batch = [
|
|
|
|
"This is an example of BERT working on MLX.",
|
|
|
|
"A second string",
|
|
|
|
"This is another string.",
|
|
|
|
]
|
2023-12-09 23:41:15 +08:00
|
|
|
|
2023-12-08 18:14:11 +08:00
|
|
|
tokens = tokenizer(batch, return_tensors="np", padding=True)
|
|
|
|
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
|
|
|
|
|
|
|
mlx_output, mlx_pooled = model(**tokens)
|
|
|
|
mlx_output = numpy.array(mlx_output)
|
|
|
|
mlx_pooled = numpy.array(mlx_pooled)
|
|
|
|
|
|
|
|
print("MLX BERT:")
|
|
|
|
print(mlx_output)
|
|
|
|
|
|
|
|
print("\n\nMLX Pooled:")
|
|
|
|
print(mlx_pooled[0, :20])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-12-09 23:41:15 +08:00
|
|
|
parser = argparse.ArgumentParser(description="Run the BERT model using MLX.")
|
2023-12-08 18:14:11 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--bert-model",
|
|
|
|
type=str,
|
|
|
|
default="bert-base-uncased",
|
|
|
|
help="The huggingface name of the BERT model to save.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--mlx-model",
|
|
|
|
type=str,
|
|
|
|
default="weights/bert-base-uncased.npz",
|
2023-12-09 23:41:15 +08:00
|
|
|
help="The path of the stored MLX BERT weights (npz file).",
|
2023-12-08 18:14:11 +08:00
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
2023-12-09 23:41:15 +08:00
|
|
|
run(args.bert_model, args.mlx_model)
|