mlx-examples/llms/mlx_lm/models/mamba2.py

431 lines
14 KiB
Python
Raw Normal View History

2024-10-02 18:48:15 +08:00
import math
from dataclasses import dataclass, field
2024-10-21 00:04:34 +08:00
from typing import Tuple, Union
2024-10-20 22:11:39 +08:00
import mlx.core as mx
2024-10-21 00:04:34 +08:00
import mlx.nn as nn
2024-10-20 22:11:39 +08:00
2024-10-02 18:48:15 +08:00
from .base import BaseModelArgs
2024-10-21 00:04:34 +08:00
from .cache import MambaCache
2024-10-02 18:48:15 +08:00
@dataclass
class ModelArgs(BaseModelArgs):
num_heads: int
head_dim: int
vocab_size: int
hidden_size: int
state_size: int
num_hidden_layers: int
layer_norm_epsilon: float
expand: int
conv_kernel: int
n_groups: int
use_bias: bool
use_conv_bias: bool
2024-10-21 00:04:34 +08:00
initializer_range: float
residual_in_fp32: bool
time_step_min: float
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
use_cache: bool = True
2024-10-02 18:48:15 +08:00
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
2024-10-02 18:48:15 +08:00
def __post_init__(self):
if not hasattr(self, "intermediate_size"):
self.intermediate_size = int(self.expand * self.hidden_size)
if not hasattr(self, "head_dim"):
self.head_dim = self.hidden_size // self.num_heads
if self.time_step_rank == "auto":
self.time_step_rank = math.ceil(self.hidden_size / 16)
2024-10-21 00:04:34 +08:00
2024-10-02 18:48:15 +08:00
class MambaRMSNormGated(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = mx.ones((hidden_size,))
self.variance_epsilon = eps
def __call__(self, hidden_states, gate=None):
if gate is not None:
hidden_states = hidden_states * nn.silu(gate)
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
2024-10-21 00:04:34 +08:00
2024-10-20 22:11:39 +08:00
def silu(x):
return x * mx.sigmoid(x)
def ssd(x, A, B, C, chunk_size):
batch, seqlen, nheads, dim = x.shape
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
outputs = []
for i in range(0, seqlen, chunk_size):
chunk = slice(i, min(i + chunk_size, seqlen))
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
dBx = mx.einsum('blhp,bln->bhpn', x[:, chunk], B[:, chunk])
state = state * mx.expand_dims(dA, axis=-1) + dBx
y = mx.einsum('bhpn,bln->blhp', state, C[:, chunk])
outputs.append(y)
return mx.concatenate(outputs, axis=1), state
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
super().__init__()
2024-10-12 02:53:29 +08:00
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
2024-10-12 02:53:29 +08:00
self.groups = groups if groups is not None else in_channels
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
2024-10-12 02:53:29 +08:00
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
# Initialize with shape (channels, 1, kernel_size) to match pretrained weights
self.weight = mx.random.normal((in_channels, 1, kernel_size))
2024-10-12 02:53:29 +08:00
self.bias = mx.zeros((out_channels,)) if bias else None
def __call__(self, x: mx.array, cache=None, cache_idx: int = 0) -> mx.array:
B, L, C = x.shape
K = self.kernel_size
# Handle padding and caching
if cache is not None:
conv_cache = cache[cache_idx]
if conv_cache is not None:
x = mx.concatenate([conv_cache, x], axis=1)
L = x.shape[1] # Update L after concatenation
else:
pad_left = K - 1
x = mx.pad(x, [(0, 0), (pad_left, 0), (0, 0)])
L = x.shape[1] # Update L after padding
# Implement depthwise convolution manually for each channel
outputs = []
for c in range(C):
# Extract single channel and reshape for 1D convolution
x_c = x[:, :, c] # Shape: [B, L]
x_c = mx.expand_dims(x_c, axis=1) # Shape: [B, 1, L]
# Extract and ensure filter is 3D
w_c = self.weight[c] # Shape: [1, kernel_size] or [1, 1, kernel_size]
if w_c.ndim == 2:
w_c = mx.expand_dims(w_c, axis=0) # Shape: [1, 1, kernel_size]
elif w_c.ndim == 1:
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
# For inference mode (single token), adjust the input
if L < K:
# Pad input to match kernel size
pad_size = K - L
x_c = mx.pad(x_c, [(0, 0), (0, 0), (pad_size, 0)])
# Apply 1D convolution for this channel
y_c = mx.conv_general(
x_c,
w_c,
stride=1,
padding=0 # We've already handled padding
)
if self.bias is not None:
y_c = y_c + self.bias[c]
outputs.append(mx.squeeze(y_c, axis=1)) # Shape: [B, 1]
# Stack all channel outputs
y = mx.stack(outputs, axis=-1) # Shape: [B, L', C]
if cache is not None:
# Update cache with the most recent K-1 tokens
cache[cache_idx] = x[:, -(K-1):, :] if L >= K else x
return y
2024-10-21 00:04:34 +08:00
2024-10-02 18:48:15 +08:00
2024-10-21 00:04:34 +08:00
class Mamba2Block(nn.Module):
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-10-21 00:04:34 +08:00
self.args = args
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
2024-10-21 00:41:28 +08:00
conv_dim = args.intermediate_size + 2 * args.state_size
2024-10-21 00:04:34 +08:00
self.conv1d = DepthWiseConv1d(
in_channels=conv_dim,
out_channels=conv_dim,
2024-10-21 00:04:34 +08:00
kernel_size=args.conv_kernel,
groups=conv_dim,
2024-10-21 00:04:34 +08:00
bias=args.use_conv_bias,
padding=args.conv_kernel - 1
)
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
2024-10-12 02:53:29 +08:00
2024-10-21 00:04:34 +08:00
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
2024-10-21 00:04:34 +08:00
if args.rescale_prenorm_residual:
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
self.out_proj.weight = self.out_proj.weight * layer_scale
2024-10-23 00:25:59 +08:00
def __call__(self, u: mx.array, cache = None):
if cache is not None and self.args.use_cache:
return self.step(u, cache)
2024-10-23 00:25:59 +08:00
2024-10-21 00:04:34 +08:00
A = -mx.exp(self.A_log)
2024-10-23 00:25:59 +08:00
zxbcdt = self.in_proj(u)
splits = [
self.args.intermediate_size,
self.args.intermediate_size + 2 * self.args.state_size,
self.args.num_heads,
]
z, xBC, dt = mx.split(zxbcdt, splits, axis=-1)
2024-10-21 00:04:34 +08:00
dt = mx.clip(
nn.softplus(dt + self.dt_bias),
self.args.time_step_min,
self.args.time_step_max
)
2024-10-12 03:36:41 +08:00
dt = mx.maximum(dt, self.args.time_step_floor)
xBC = silu(self.conv1d(xBC))
xBC_parts = mx.split(
2024-10-23 00:25:59 +08:00
xBC,
[self.args.intermediate_size, self.args.state_size, self.args.state_size],
2024-10-23 00:25:59 +08:00
axis=-1
)
x = xBC_parts[0]
B = xBC_parts[1]
C = xBC_parts[2]
2024-10-12 03:36:41 +08:00
# Replace rearrange with reshape and transpose
b, l, hp = x.shape
h = self.args.num_heads
p = hp // h
x = mx.reshape(x, (b, l, h, p))
y, ssm_state = ssd(
2024-10-23 00:25:59 +08:00
x * mx.expand_dims(dt, -1),
A * dt,
B,
C,
self.args.chunk_size
)
2024-10-12 03:36:41 +08:00
2024-10-23 00:25:59 +08:00
y = y + x * mx.expand_dims(self.D, -1)
# Replace rearrange with reshape
y = mx.reshape(y, (b, l, h * p))
y = self.norm(y + z)
2024-10-23 00:25:59 +08:00
y = self.out_proj(y)
2024-10-02 18:48:15 +08:00
if cache is not None and self.args.use_cache:
2024-10-23 00:25:59 +08:00
cache[1] = ssm_state
2024-10-21 00:04:34 +08:00
if self.args.residual_in_fp32:
y = mx.cast(y, mx.float32)
2024-10-23 00:25:59 +08:00
return y
def step(self, u: mx.array, cache: MambaCache):
batch_size = u.shape[0]
seq_len = u.shape[1]
outputs = []
# Initialize SSM state if needed
if cache[1] is None:
cache[1] = mx.zeros((
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
for pos in range(seq_len):
# Get single token
u_t = u[:, pos:pos+1, :]
# Project input
zxbcdt = self.in_proj(u_t)
# Calculate sizes
d_model = self.args.intermediate_size
d_state = self.args.state_size
n_heads = self.args.num_heads
d_head = self.args.head_dim
# Correct splits for z, xBC, dt
splits = [
d_model, # z size
d_model + 2 * d_state, # xBC size (delta, B, C)
n_heads # dt size
]
# Split the projected input
z = zxbcdt[:, :, :splits[0]]
xBC = zxbcdt[:, :, splits[0]:splits[0] + splits[1]]
dt = zxbcdt[:, :, -splits[2]:] # Take last n_heads elements
# Process dt
dt = mx.reshape(dt, (batch_size, n_heads))
dt = mx.clip(
nn.softplus(dt + self.dt_bias),
self.args.time_step_min,
self.args.time_step_max
)
dt = mx.maximum(dt, self.args.time_step_floor)
# Process convolution
xBC = self.conv1d(xBC, cache=cache, cache_idx=0)
xBC = silu(xBC)
# Split convolved xBC into x, B, C
x = xBC[:, :, :d_model]
B = xBC[:, :, d_model:d_model + d_state]
C = xBC[:, :, -d_state:]
# Reshape x into (batch, heads, dim)
x = mx.reshape(x, (batch_size, 1, n_heads, d_head))
x = mx.squeeze(x, axis=1) # (batch, heads, dim)
# Reshape B into (batch, heads, dim, state)
B = mx.reshape(B, (batch_size, 1, d_state))
B = mx.broadcast_to(B, (batch_size, n_heads, d_state))
B = mx.expand_dims(B, axis=2) # (batch, heads, 1, state)
# Reshape C for later use
C = mx.reshape(C, (batch_size, 1, d_state))
C = mx.broadcast_to(C, (batch_size, n_heads, d_state))
C = mx.expand_dims(C, axis=3) # (batch, heads, state, 1)
# Compute SSM updates
A = -mx.exp(self.A_log)
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1) # (batch, heads, 1, 1)
# Prepare x for Bx computation
x = mx.expand_dims(x, axis=3) # (batch, heads, dim, 1)
# Compute dBx with proper broadcasting
dBx = mx.matmul(x, B) # (batch, heads, dim, state)
2024-10-23 00:25:59 +08:00
# Update state
ssm_state = cache[1] # (batch, heads, dim, state)
ssm_state = ssm_state * dA + dBx
cache[1] = ssm_state
2024-10-23 00:25:59 +08:00
# Compute output
y = mx.matmul(ssm_state, C) # (batch, heads, dim, 1)
y = mx.squeeze(y, axis=-1) # (batch, heads, dim)
2024-10-23 00:25:59 +08:00
# Add skip connection with D
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
# Reshape to original dimensions
y = mx.reshape(y, (batch_size, 1, n_heads * d_head))
2024-10-23 00:25:59 +08:00
# Apply norm and output projection
y = self.norm(y + z)
y = self.out_proj(y)
2024-10-23 00:25:59 +08:00
if self.args.residual_in_fp32:
y.astype(mx.float32)
outputs.append(y)
return mx.concatenate(outputs, axis=1)
2024-10-02 18:48:15 +08:00
2024-10-21 00:04:34 +08:00
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-10-21 00:04:34 +08:00
self.mixer = Mamba2Block(args)
2024-10-12 02:53:29 +08:00
self.norm = nn.RMSNorm(args.hidden_size)
2024-10-02 18:48:15 +08:00
2024-10-12 02:53:29 +08:00
def __call__(self, x: mx.array, cache):
return self.mixer(self.norm(x), cache) + x
2024-10-02 18:48:15 +08:00
class Mamba2(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
2024-10-21 00:04:34 +08:00
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
2024-10-02 18:48:15 +08:00
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
2024-10-21 00:04:34 +08:00
def __call__(self, x: mx.array, cache):
x = self.embeddings(x)
2024-10-02 18:48:15 +08:00
if cache is None:
2024-10-21 00:04:34 +08:00
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
x = layer(x, c)
return self.norm_f(x)
2024-10-02 18:48:15 +08:00
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
2024-10-21 00:04:34 +08:00
2024-10-02 18:48:15 +08:00
self.backbone = Mamba2(args)
2024-10-21 00:04:34 +08:00
2024-10-02 18:48:15 +08:00
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
2024-10-12 02:53:29 +08:00
def __call__(self, inputs: mx.array, cache=None):
2024-10-02 18:48:15 +08:00
B, T = inputs.shape
x = self.backbone(inputs, cache)
if self.args.tie_word_embeddings:
logits = self.backbone.embeddings.as_linear(x)
else:
logits = self.lm_head(x)
2024-10-12 02:53:29 +08:00
print('ouput')
2024-10-02 18:48:15 +08:00
return logits
2024-10-12 02:53:29 +08:00
2024-10-20 22:11:39 +08:00
def make_cache(self):
2024-10-21 00:04:34 +08:00
return [MambaCache() for _ in range(len(self.layers))]
def sanitize(self, weights):
sanitized = {}
for k, v in weights.items():
if "conv1d.weight" in k:
# Ensure weights are in correct shape (channels, 1, kernel_size)
if v.ndim == 2:
v = mx.expand_dims(v, axis=1)
elif v.ndim == 1:
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
sanitized[k] = v
else:
sanitized[k] = v
return sanitized
2024-10-12 02:53:29 +08:00
2024-10-02 18:48:15 +08:00
@property
def layers(self):
return self.backbone.layers