mlx-examples/llms/mlx_lm/tuner/datasets.py

300 lines
9.5 KiB
Python
Raw Normal View History

import json
from pathlib import Path
from typing import Dict, List, Union
from transformers import PreTrainedTokenizer
class Dataset:
"""
Light-weight wrapper to hold a dataset.
"""
def __init__(self, data: List[Dict[str, str]], text_key: str = "text"):
self._text_key = text_key
self._data = data
def __getitem__(self, idx: int):
return self._data[idx][self._text_key]
def __len__(self):
if self._data is None:
return 0
return len(self._data)
class ChatDataset(Dataset):
"""
A dataset for chat data in the format of {"messages": [...]}
https://platform.openai.com/docs/guides/fine-tuning/example-format
"""
def __init__(
self,
data: List[Dict[str, str]],
tokenizer: PreTrainedTokenizer,
chat_key: str = "messages",
):
super().__init__(data)
self._tokenizer = tokenizer
self._chat_key = chat_key
def __getitem__(self, idx: int):
messages = self._data[idx][self._chat_key]
text = self._tokenizer.apply_chat_template(
messages,
tools=self._data[idx].get("tools", None),
tokenize=False,
add_generation_prompt=True,
)
return text
class CompletionsDataset(Dataset):
"""
A dataset for prompt-completion data in the format of {"prompt": ..., "completion": ...}
or using user-provided keys for prompt and completion values
https://platform.openai.com/docs/guides/fine-tuning/example-format
"""
def __init__(
self,
data: List[Dict[str, str]],
tokenizer: PreTrainedTokenizer,
prompt_key: str = "prompt",
completion_key: str = "completion",
):
super().__init__(data)
self._tokenizer = tokenizer
self._prompt_key = prompt_key
self._completion_key = completion_key
def __getitem__(self, idx: int):
data = self._data[idx]
text = self._tokenizer.apply_chat_template(
[
{"role": "user", "content": data[self._prompt_key]},
{"role": "assistant", "content": data[self._completion_key]},
],
tokenize=False,
add_generation_prompt=True,
)
return text
class CompletionsDatasetCollection:
def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]):
self.collection = data
def __getitem__(self, idx: int):
iteration = iter(self.collection)
item = next(iteration)
curr_idx = idx
while True:
try:
2024-11-04 09:36:55 +08:00
if (curr_idx + 1) <= len(item):
return item[curr_idx]
else:
curr_idx -= len(item)
item = next(iteration)
except StopIteration:
raise IndexError(idx)
def __len__(self):
return sum(map(len, self.collection))
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer)
elif "prompt" in sample and "completion" in sample:
return CompletionsDataset(data, tokenizer)
elif "text" in sample:
return Dataset(data)
else:
raise ValueError(
"Unsupported data format, check the supported formats here:\n"
"https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data."
)
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
def load_subset(path):
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
return create_dataset(data, tokenizer)
names = ("train", "valid", "test")
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
return train, valid, test
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
from datasets import exceptions, load_dataset
try:
dataset = load_dataset(data_id)
names = ("train", "valid", "test")
train, valid, test = [
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
for n in names
]
except exceptions.DatasetNotFoundError:
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
return train, valid, test
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
import datasets
def create_hf_dataset(
dataset_name: Union[None, str],
text_feature: Union[None, str],
prompt_feature: Union[None, str],
completion_feature: Union[None, str],
chat_feature: Union[None, str],
split: str = None,
):
ds = datasets.load_dataset(
dataset_name,
split=split,
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
elif chat_feature:
return ChatDataset(ds, tokenizer, chat_key=chat_feature)
elif text_feature:
return Dataset(ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
def get_hf_custom_features(hf_args):
return (
hf_args.get("text_feature"),
hf_args.get("prompt_feature"),
hf_args.get("completion_feature"),
hf_args.get("chat_feature"),
)
def get_train_and_valid_splits(hf_args, ds_name):
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
text_f, prompt_f, completion_f, chat_f = get_hf_custom_features(hf_args)
train = create_hf_dataset(
2024-11-04 09:26:15 +08:00
dataset_name=ds_name,
text_feature=text_f,
prompt_feature=prompt_f,
completion_feature=completion_f,
chat_feature=chat_f,
split=train_split,
)
valid = create_hf_dataset(
2024-11-04 09:26:15 +08:00
dataset_name=ds_name,
text_feature=text_f,
prompt_feature=prompt_f,
completion_feature=completion_f,
chat_feature=chat_f,
split=valid_split,
)
return train, valid
2024-11-04 09:04:15 +08:00
if args.hf_datasets:
dataset_collection = args.hf_datasets
train_collection = []
valid_collection = []
test_collection = []
for ds in dataset_collection:
hf_args = ds["hf_dataset"]
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature, prompt_feature, completion_feature, chat_f = (
get_hf_custom_features(hf_args)
)
if args.train:
train, valid = get_train_and_valid_splits(hf_args, dataset_name)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(
2024-11-04 09:26:15 +08:00
dataset_name=dataset_name,
text_feature=text_feature,
prompt_feature=prompt_feature,
completion_feature=completion_feature,
chat_feature=chat_f,
split=hf_args.get("test_split"),
)
else:
test = []
train_collection.append(train)
valid_collection.append(valid)
test_collection.append(test)
return (
CompletionsDatasetCollection(train_collection),
CompletionsDatasetCollection(valid_collection),
CompletionsDatasetCollection(test_collection),
)
else:
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature, prompt_feature, completion_feature, chat_feature = (
get_hf_custom_features(hf_args)
)
if args.train:
train, valid = get_train_and_valid_splits(hf_args, dataset_name)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(
dataset_name,
text_feature,
prompt_feature,
completion_feature,
chat_feature,
split=hf_args.get("test_split"),
)
else:
test = []
return train, valid, test
def load_dataset(args, tokenizer: PreTrainedTokenizer):
2024-11-04 09:04:15 +08:00
if getattr(args, "hf_dataset", None) is not None or getattr(args, "hf_datasets"):
train, valid, test = load_custom_hf_dataset(args, tokenizer)
else:
data_path = Path(args.data)
if data_path.exists():
train, valid, test = load_local_dataset(data_path, tokenizer)
else:
print(f"Loading Hugging Face dataset {args.data}.")
train, valid, test = load_hf_dataset(args.data, tokenizer)
if args.train and len(train) == 0:
raise ValueError(
"Training set not found or empty. Must provide training set for fine-tuning."
)
if args.train and len(valid) == 0:
raise ValueError(
"Validation set not found or empty. Must provide validation set for fine-tuning."
)
if args.test and len(test) == 0:
raise ValueError(
"Test set not found or empty. Must provide test set for evaluation."
)
return train, valid, test