mlx-examples/llms/mlx_lm/tuner/orpo_trainer.py

276 lines
9.8 KiB
Python
Raw Normal View History

2025-01-19 08:09:43 +08:00
# Copyright © 2024 Apple Inc.
from dataclasses import dataclass, field
import mlx.core as mx
import mlx.nn as nn
from dpo_trainer import DPOTrainingArgs, iterate_dpo_batches, train_dpo, TrainingCallback
@dataclass
class ORPOTrainingArgs(DPOTrainingArgs):
"""
Training arguments specific to ORPO, extending DPO arguments.
"""
mu: float = field(
default=0.5,
metadata={"help": "ORPO KL divergence weight parameter"}
)
def orpo_loss(
model,
reference_teacher_model,
chosen: mx.array,
rejected: mx.array,
chosen_masks: mx.array,
rejected_masks: mx.array,
beta: float,
delta: float,
mu: float = 0.5, # ORPO hyperparameter for balancing KL divergence
loss_type: str = "sigmoid",
is_reference_free: bool = False
):
"""
Calculate ORPO loss for inputs.
ORPO extends DPO by adding a KL regularization term to prevent overfitting to preferences.
Args:
model: Policy model
reference_teacher_model: Reference model
chosen: Chosen sequence tokens
rejected: Rejected sequence tokens
chosen_masks: Masks for chosen sequences
rejected_masks: Masks for rejected sequences
beta: Temperature parameter
delta: Margin for DPOP loss type
mu: ORPO hyperparameter for balancing KL divergence (default: 0.5)
loss_type: Loss type ('sigmoid', 'hinge', 'ipo', or 'dpop')
is_reference_free: Whether to use reference-free training
Returns:
Tuple of (loss, reward, num_tokens)
"""
def make_predictions(model, x, mask):
inputs = x[:, :-1]
targets = x[:, 1:]
logits = model(inputs)
logits = logits.astype(mx.float32)
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
num_chosen_tokens = chosen_masks.sum(-1)
num_rejected_tokens = rejected_masks.sum(-1)
# Calculate log probabilities for policy model
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
# Calculate reference model scores
if not is_reference_free:
reference_chosen_scores = mx.stop_gradient(make_predictions(reference_teacher_model, chosen, chosen_masks))
reference_rejected_scores = mx.stop_gradient(make_predictions(reference_teacher_model, rejected, rejected_masks))
else:
reference_chosen_scores = mx.zeros_like(policy_chosen_scores)
reference_rejected_scores = mx.zeros_like(policy_rejected_scores)
# Compute average log probabilities if using IPO loss
if loss_type == "ipo":
policy_chosen_score = policy_chosen_scores.sum(-1) / num_chosen_tokens
policy_rejected_score = policy_rejected_scores.sum(-1) / num_rejected_tokens
reference_chosen_score = reference_chosen_scores.sum(-1) / num_chosen_tokens
reference_rejected_score = reference_rejected_scores.sum(-1) / num_rejected_tokens
else:
policy_chosen_score = policy_chosen_scores.sum(-1)
policy_rejected_score = policy_rejected_scores.sum(-1)
reference_chosen_score = reference_chosen_scores.sum(-1)
reference_rejected_score = reference_rejected_scores.sum(-1)
# Calculate preference logits
logits = (policy_chosen_score - policy_rejected_score) - (reference_chosen_score - reference_rejected_score)
# Calculate preference loss based on loss type
if loss_type == "sigmoid":
preference_loss = -nn.log_sigmoid(beta * logits)
elif loss_type == "hinge":
preference_loss = nn.relu(1 - beta * logits)
elif loss_type == "ipo":
preference_loss = (logits - 1 / (2 * beta)) ** 2
elif loss_type == "dpop":
penalty = mx.maximum(mx.zeros_like(policy_chosen_score), reference_chosen_score - policy_chosen_score)
preference_loss = -(nn.log_sigmoid(beta * logits) - delta * penalty)
else:
raise ValueError(f"Unknown loss type: {loss_type}")
# Calculate KL divergence term for ORPO
kl_div_chosen = mx.mean((policy_chosen_scores - reference_chosen_scores) ** 2)
kl_div_rejected = mx.mean((policy_rejected_scores - reference_rejected_scores) ** 2)
kl_regularization = mu * (kl_div_chosen + kl_div_rejected)
# Combine preference loss and KL regularization
loss = mx.mean(preference_loss) + kl_regularization
num_tokens = (num_chosen_tokens + num_rejected_tokens).sum()
# Calculate rewards for monitoring
chosen_reward = beta * mx.mean(policy_chosen_score - reference_chosen_score)
rejected_reward = beta * mx.mean(policy_rejected_score - reference_rejected_score)
reward = mx.stack([chosen_reward, rejected_reward])
return loss, reward, num_tokens
def evaluate_orpo(
model,
reference_model,
dataset,
tokenizer,
batch_size,
num_batches,
beta: float,
delta: float,
mu: float = 0.5,
max_seq_length=2048,
loss_type="sigmoid",
is_reference_free=False,
):
"""
Evaluate model using ORPO metrics.
Args:
model: Policy model to evaluate
reference_model: Reference model for comparison
dataset: Evaluation dataset
tokenizer: Tokenizer for processing text
batch_size: Batch size for evaluation
num_batches: Number of batches to evaluate (-1 for full dataset)
beta: Temperature parameter
delta: Margin for DPOP loss
mu: ORPO KL divergence weight
max_seq_length: Maximum sequence length
loss_type: Type of loss function
is_reference_free: Whether to use reference-free evaluation
Returns:
Tuple of (loss, rewards, kl_metrics), where:
- loss is the total ORPO loss
- rewards is [chosen_reward, rejected_reward]
- kl_metrics is [chosen_kl, rejected_kl]
"""
all_losses = 0
all_rewards = mx.zeros((2,)) # [chosen_reward, rejected_reward]
all_kl_divs = mx.zeros((2,)) # [chosen_kl, rejected_kl]
ntokens = 0
def compute_kl_divergence(policy_scores, reference_scores, masks):
"""Helper function to compute KL divergence metrics."""
# Using MSE as a proxy for KL divergence as in the loss function
valid_tokens = masks.sum()
kl_div = ((policy_scores - reference_scores) ** 2 * masks).sum() / valid_tokens
return kl_div
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
for _, batch in zip(
index_iterator,
iterate_dpo_batches( # Reusing DPO batch iterator
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
chosen, rejected, chosen_masks, rejected_masks = batch
# Get model predictions
def make_predictions(model, x, mask):
inputs = x[:, :-1]
targets = x[:, 1:]
logits = model(inputs)
logits = logits.astype(mx.float32)
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
# Get scores for both models
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
if not is_reference_free:
reference_chosen_scores = mx.stop_gradient(
make_predictions(reference_model, chosen, chosen_masks)
)
reference_rejected_scores = mx.stop_gradient(
make_predictions(reference_model, rejected, rejected_masks)
)
else:
reference_chosen_scores = mx.zeros_like(policy_chosen_scores)
reference_rejected_scores = mx.zeros_like(policy_rejected_scores)
# Compute KL divergences
chosen_kl = compute_kl_divergence(
policy_chosen_scores, reference_chosen_scores, chosen_masks[:, :-1]
)
rejected_kl = compute_kl_divergence(
policy_rejected_scores, reference_rejected_scores, rejected_masks[:, :-1]
)
all_kl_divs += mx.stack([chosen_kl, rejected_kl])
# Compute ORPO loss and rewards
loss, reward, toks = orpo_loss(
model=model,
reference_teacher_model=reference_model,
chosen=chosen,
rejected=rejected,
chosen_masks=chosen_masks,
rejected_masks=rejected_masks,
beta=beta,
delta=delta,
mu=mu,
loss_type=loss_type,
is_reference_free=is_reference_free,
)
all_losses += loss * toks
all_rewards += reward
ntokens += toks
mx.eval(all_losses, all_rewards, all_kl_divs, ntokens)
# Aggregate metrics across distributed workers if necessary
all_losses = mx.distributed.all_sum(all_losses)
all_rewards = mx.distributed.all_sum(all_rewards)
all_kl_divs = mx.distributed.all_sum(all_kl_divs)
ntokens = mx.distributed.all_sum(ntokens)
# Normalize metrics
avg_loss = (all_losses / ntokens).item()
avg_rewards = [r / mx.distributed.init().size() for r in all_rewards.tolist()]
avg_kl_divs = [kl / mx.distributed.init().size() for kl in all_kl_divs.tolist()]
return avg_loss, avg_rewards, avg_kl_divs
def train_orpo(
model,
reference_model,
tokenizer,
optimizer,
train_dataset,
val_dataset,
args: ORPOTrainingArgs = ORPOTrainingArgs(),
training_callback: TrainingCallback = None,
):
"""
Train a model using ORPO (Offline Rejection Preference Optimization).
This function adapts the DPO training loop to use ORPO loss.
"""
return train_dpo(
model=model,
reference_model=reference_model,
tokenizer=tokenizer,
optimizer=optimizer,
train_dataset=train_dataset,
val_dataset=val_dataset,
args=args,
loss_fn=orpo_loss,
training_callback=training_callback,
loss_type=args.loss_type,
)