mlx-examples/bert/model.py

168 lines
5.1 KiB
Python
Raw Normal View History

import argparse
from pathlib import Path
from typing import List, Optional, Tuple
2023-12-08 18:14:11 +08:00
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizerBase
2023-12-08 18:14:11 +08:00
2023-12-09 23:41:15 +08:00
class TransformerEncoderLayer(nn.Module):
2023-12-08 18:14:11 +08:00
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
2023-12-09 23:41:15 +08:00
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
2023-12-08 18:14:11 +08:00
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
2023-12-09 23:41:15 +08:00
class TransformerEncoder(nn.Module):
2023-12-08 18:14:11 +08:00
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
2023-12-09 23:41:15 +08:00
for layer in self.layers:
x = layer(x, mask)
2023-12-08 18:14:11 +08:00
return x
class BertEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size
)
2023-12-08 18:14:11 +08:00
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
2023-12-08 18:14:11 +08:00
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
2023-12-08 18:14:11 +08:00
def __call__(
self, input_ids: mx.array, token_type_ids: mx.array = None
) -> mx.array:
2023-12-08 18:14:11 +08:00
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
if token_type_ids is None:
# If token_type_ids is not provided, default to zeros
token_type_ids = mx.zeros_like(input_ids)
2023-12-08 18:14:11 +08:00
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config):
super().__init__()
2023-12-08 18:14:11 +08:00
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.hidden_size,
2023-12-08 18:14:11 +08:00
num_heads=config.num_attention_heads,
mlp_dims=config.intermediate_size,
2023-12-08 18:14:11 +08:00
)
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
2023-12-08 18:14:11 +08:00
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array = None,
attention_mask: mx.array = None,
) -> Tuple[mx.array, mx.array]:
2023-12-08 18:14:11 +08:00
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
2023-12-10 10:21:24 +08:00
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
2023-12-08 18:14:11 +08:00
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
def load_model(
bert_model: str, weights_path: str
) -> Tuple[Bert, PreTrainedTokenizerBase]:
if not Path(weights_path).exists():
raise ValueError(f"No model weights found in {weights_path}")
config = AutoConfig.from_pretrained(bert_model)
2023-12-09 23:41:15 +08:00
# create and update the model
model = Bert(config)
model.load_weights(weights_path)
2023-12-09 23:41:15 +08:00
tokenizer = AutoTokenizer.from_pretrained(bert_model)
2023-12-09 23:41:15 +08:00
return model, tokenizer
def run(bert_model: str, mlx_model: str, batch: List[str]):
2023-12-09 23:41:15 +08:00
model, tokenizer = load_model(bert_model, mlx_model)
2023-12-08 18:14:11 +08:00
tokens = tokenizer(batch, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
return model(**tokens)
2023-12-08 18:14:11 +08:00
if __name__ == "__main__":
2023-12-09 23:41:15 +08:00
parser = argparse.ArgumentParser(description="Run the BERT model using MLX.")
2023-12-08 18:14:11 +08:00
parser.add_argument(
"--bert-model",
type=str,
default="bert-base-uncased",
help="The huggingface name of the BERT model to save.",
)
parser.add_argument(
"--mlx-model",
type=str,
default="weights/bert-base-uncased.npz",
2023-12-09 23:41:15 +08:00
help="The path of the stored MLX BERT weights (npz file).",
2023-12-08 18:14:11 +08:00
)
parser.add_argument(
"--text",
type=str,
default="This is an example of BERT working in MLX",
help="The text to generate embeddings for.",
)
2023-12-08 18:14:11 +08:00
args = parser.parse_args()
run(args.bert_model, args.mlx_model, args.text)