mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
96 lines
2.6 KiB
Python
96 lines
2.6 KiB
Python
![]() |
import argparse
|
||
|
import time
|
||
|
|
||
|
import mlx.core as mx
|
||
|
from decoder import SpeculativeDecoder
|
||
|
from mlx.utils import tree_unflatten
|
||
|
from model import Model
|
||
|
from transformers import T5Config
|
||
|
|
||
|
|
||
|
def load_model(model_name: str):
|
||
|
config = T5Config.from_pretrained(model_name)
|
||
|
model = Model(config)
|
||
|
weights = mx.load(f"{model_name}.npz")
|
||
|
weights = tree_unflatten(list(weights.items()))
|
||
|
model.update(weights)
|
||
|
mx.eval(model.parameters())
|
||
|
return model
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
mx.random.seed(args.seed)
|
||
|
|
||
|
spec_decoder = SpeculativeDecoder(
|
||
|
model=load_model(args.model_name),
|
||
|
draft_model=load_model(args.draft_model_name),
|
||
|
tokenizer=args.model_name,
|
||
|
delta=args.delta,
|
||
|
num_draft=args.num_draft,
|
||
|
)
|
||
|
|
||
|
tic = time.time()
|
||
|
print(args.prompt)
|
||
|
if args.regular_decode:
|
||
|
spec_decoder.generate(args.prompt, max_tokens=args.max_tokens)
|
||
|
else:
|
||
|
stats = spec_decoder.speculative_decode(args.prompt, max_tokens=args.max_tokens)
|
||
|
print("=" * 10)
|
||
|
print(f"Accepted {stats['n_accepted']} / {stats['n_draft']}.")
|
||
|
print(f"Decoding steps {stats['n_steps']}.")
|
||
|
|
||
|
toc = time.time()
|
||
|
print("=" * 10)
|
||
|
print(f"Full generation time {toc - tic:.3f}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||
|
parser.add_argument(
|
||
|
"--num-draft",
|
||
|
type=int,
|
||
|
default=5,
|
||
|
help="Number of draft tokens to use per decoding step.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--model-name",
|
||
|
help="Name of the model.",
|
||
|
default="t5-small",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--draft-model-name",
|
||
|
help="Name of the draft model.",
|
||
|
default="t5-small",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--seed",
|
||
|
type=int,
|
||
|
default=0,
|
||
|
help="PRNG seed.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--max-tokens",
|
||
|
"-m",
|
||
|
type=int,
|
||
|
default=100,
|
||
|
help="Maximum number of tokens to generate.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--prompt",
|
||
|
default="translate English to French: Let's go to the store and buy some groceries including eggs, avocadoes, and bread.",
|
||
|
help="The prompt processed by the model.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--delta",
|
||
|
type=float,
|
||
|
default=0.1,
|
||
|
help="Lenience for accepting the proposal tokens.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--regular-decode",
|
||
|
action="store_true",
|
||
|
help="Use regular decoding instead of speculative decoding.",
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
main(args)
|