mlx-examples/llms/mlx_lm/tuner/utils.py

144 lines
4.5 KiB
Python
Raw Normal View History

import os
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from .lora import LoRALinear
def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
"""
Convert some of the models linear layers to lora layers.
Args:
model (nn.Module): The neural network model.
num_lora_layers (int): The number of blocks to convert to lora layers
starting from the last layer.
"""
def check_lora_layers(num_model):
if num_lora_layers > num_model:
raise ValueError(
f"Requested {num_lora_layers} LoRA layers "
f"but the model only has {num_model_layers} layers."
)
if model.model_type in [
"mistral",
"llama",
"phi",
"mixtral",
"stablelm_epoch",
"qwen2",
]:
check_lora_layers(len(model.model.layers))
for l in model.model.layers[len(model.model.layers) - num_lora_layers :]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
l.block_sparse_moe.gate = LoRALinear.from_linear(
l.block_sparse_moe.gate
)
elif model.model_type == "olmo":
check_lora_layers(len(model.model.transformer.blocks))
for l in model.model.transformer.blocks[
len(model.model.transformer.blocks) - num_lora_layers :
]:
l.att_proj = LoRALinear.from_linear(l.att_proj)
elif model.model_type == "phi-msft":
check_lora_layers(len(model.transformer.h))
for l in model.transformer.h[len(model.transformer.h) - num_lora_layers :]:
l.mixer.Wqkv = LoRALinear.from_linear(l.mixer.Wqkv)
l.moe.gate = LoRALinear.from_linear(l.moe.gate)
else:
raise ValueError(f"Lora does not support {model.model_type}")
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
"""
Apply LoRA layers to the model.
Args:
model (nn.Module): The neural network model.
adapter_file (str): Path to the adapter configuration file.
Returns:
nn.Module: The updated model with LoRA layers applied.
"""
if not os.path.exists(adapter_file):
raise FileNotFoundError(f"The adapter file does not exist: {adapter_file}")
adapters = list(mx.load(adapter_file).items())
linear_replacements = []
lora_layers = set(
[name.replace(".lora_a", "").replace(".lora_b", "") for name, _ in adapters]
)
for name, module in model.named_modules():
if name in lora_layers:
replacement_module = LoRALinear.from_linear(module)
linear_replacements.append((name, replacement_module))
model.update_modules(tree_unflatten(linear_replacements))
model.update(tree_unflatten(adapters))
return model
def dequantize(model: nn.Module) -> nn.Module:
"""
Dequantize the quantized linear layers in the model.
Args:
model (nn.Module): The model with quantized linear layers.
Returns:
nn.Module: The model with dequantized layers.
"""
de_quantize_layers = []
for name, module in model.named_modules():
if isinstance(module, nn.QuantizedLinear):
bias = "bias" in module
weight = module.weight
weight = mx.dequantize(
weight,
module.scales,
module.biases,
module.group_size,
module.bits,
).astype(mx.float16)
output_dims, input_dims = weight.shape
linear = nn.Linear(input_dims, output_dims, bias=bias)
linear.weight = weight
if bias:
linear.bias = module.bias
de_quantize_layers.append((name, linear))
if len(de_quantize_layers) > 0:
model.update_modules(tree_unflatten(de_quantize_layers))
return model
def remove_lora_layers(model: nn.Module) -> nn.Module:
"""
Remove the LoRA layers from the model.
Args:
model (nn.Module): The model with LoRA layers.
Returns:
nn.Module: The model without LoRA layers.
"""
reset_layers = []
for name, module in model.named_modules():
if isinstance(module, LoRALinear):
reset_layers.append((name, module.linear))
if len(reset_layers) > 0:
model.update_modules(tree_unflatten(reset_layers))
return model