mlx-examples/llms/mlx_lm/models/helium.py

290 lines
9.9 KiB
Python
Raw Normal View History

2025-01-19 03:35:25 +08:00
from typing import Any, Optional, Tuple
from dataclasses import dataclass
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, scaled_dot_product_attention, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
num_key_value_heads: int
rms_norm_eps: float
vocab_size: int
attention_bias: bool
attention_dropout: float
head_dim: int
initializer_range: float
max_position_embeddings: int
mlp_bias: bool
model_type: str = "helium"
rope_theta: float = 100000.0
tie_word_embeddings: bool = False
def rotate_half(x: mx.array) -> mx.array:
"""Rotates half the hidden dims of the input."""
x1 = x[..., ::2]
x2 = x[..., 1::2]
return mx.concatenate([-x2, x1], axis=-1)
def apply_rotary_pos_emb(q: mx.array, k: mx.array, cos: mx.array, sin: mx.array, position_ids=None, unsqueeze_dim=1) -> Tuple[mx.array, mx.array]:
"""
Applies Rotary Position Embedding to the query and key tensors.
Args:
q: Query tensor
k: Key tensor
cos: Cosine part of the rotary embedding
sin: Sine part of the rotary embedding
position_ids: Deprecated and unused
unsqueeze_dim: Dimension to unsqueeze for broadcasting
"""
# Unsqueeze cos and sin
for _ in range(unsqueeze_dim):
cos = mx.expand_dims(cos, 1)
sin = mx.expand_dims(sin, 1)
# Interleave the cos and sin values
cos = mx.repeat(cos[..., :cos.shape[-1] // 2], repeats=2, axis=-1)
sin = mx.repeat(sin[..., :sin.shape[-1] // 2], repeats=2, axis=-1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def apply_rotary_pos_emb(q: mx.array, k: mx.array, cos: mx.array, sin: mx.array, position_ids=None, unsqueeze_dim=1) -> Tuple[mx.array, mx.array]:
"""
Applies Rotary Position Embedding to the query and key tensors.
Args:
q: Query tensor (batch, n_heads, seq_len, head_dim)
k: Key tensor (batch, n_heads, seq_len, head_dim)
cos: Cosine part of rotary embedding (batch, seq_len, head_dim)
sin: Sine part of rotary embedding (batch, seq_len, head_dim)
"""
# Reshape cos and sin to match the query/key shape
cos = mx.expand_dims(cos, axis=1) # (batch, 1, seq_len, head_dim)
sin = mx.expand_dims(sin, axis=1) # (batch, 1, seq_len, head_dim)
# Make sure we only rotate half of the dimensions
head_dim = q.shape[-1]
cos = mx.repeat(cos[..., :head_dim//2], repeats=2, axis=-1)
sin = mx.repeat(sin[..., :head_dim//2], repeats=2, axis=-1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class HeliumRotaryEmbedding(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.head_dim = config.hidden_size // config.num_attention_heads
self.base = config.rope_theta
def __call__(self, x: mx.array, position_ids: mx.array) -> Tuple[mx.array, mx.array]:
"""
Args:
x: Input tensor (batch, seq_len, hidden_size)
position_ids: Position IDs (batch, seq_len)
Returns:
Tuple of (cos, sin) tensors for rotary embeddings
"""
batch_size, seq_length = position_ids.shape
# Initialize output tensors for cos and sin
cos_cached = []
sin_cached = []
# Generate embeddings for each position
for i in range(seq_length):
# Create position-specific embedding
theta = 1.0 / (self.base ** (mx.arange(self.head_dim//2) / (self.head_dim//2)))
pos_embedding = i * theta
# Calculate cos and sin
cos = mx.cos(pos_embedding)
sin = mx.sin(pos_embedding)
cos_cached.append(cos)
sin_cached.append(sin)
# Stack along sequence dimension
cos_cached = mx.stack(cos_cached, axis=0) # (seq_len, head_dim//2)
sin_cached = mx.stack(sin_cached, axis=0) # (seq_len, head_dim//2)
# Add batch dimension and expand
cos_cached = mx.expand_dims(cos_cached, axis=0) # (1, seq_len, head_dim//2)
sin_cached = mx.expand_dims(sin_cached, axis=0) # (1, seq_len, head_dim//2)
# Repeat for batch size
cos_cached = mx.repeat(cos_cached, batch_size, axis=0) # (batch, seq_len, head_dim//2)
sin_cached = mx.repeat(sin_cached, batch_size, axis=0) # (batch, seq_len, head_dim//2)
return cos_cached, sin_cached
class HeliumAttention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
assert args.num_key_value_heads is not None
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
def __call__(
self,
x: mx.array,
position_embeddings: tuple[mx.array, mx.array], # (cos, sin)
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
# Apply rotary embeddings
cos, sin = position_embeddings
queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class HeliumMLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.intermediate_size = args.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=args.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=args.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.mlp_bias)
def __call__(self, x: mx.array) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class HeliumDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = HeliumAttention(args)
self.mlp = HeliumMLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
x: mx.array,
position_embeddings: tuple[mx.array, mx.array],
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), position_embeddings, mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class HeliumModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_hidden_layers = args.num_hidden_layers
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
# Create RoPE embeddings to be shared across layers
self.rotary_emb = HeliumRotaryEmbedding(args)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
# Generate position embeddings once to be shared across layers
position_embeddings = self.rotary_emb(h, inputs)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, position_embeddings, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = HeliumModel(args)
self.vocab_size = args.vocab_size
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
out = self.model(inputs, mask, cache)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
@property
def layers(self):
return self.model.layers