2024-01-14 00:35:03 +08:00
|
|
|
import glob
|
|
|
|
import inspect
|
|
|
|
import json
|
|
|
|
import math
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from pathlib import Path
|
2024-01-24 00:44:37 +08:00
|
|
|
from typing import Optional, Tuple
|
2024-01-14 00:35:03 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
2024-02-13 02:51:02 +08:00
|
|
|
import numpy as np
|
2024-01-14 00:35:03 +08:00
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from mlx.utils import tree_unflatten
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs:
|
2024-02-13 02:51:02 +08:00
|
|
|
model_type: str
|
2024-01-14 00:35:03 +08:00
|
|
|
max_sequence_length: int = 2048
|
|
|
|
num_vocab: int = 51200
|
|
|
|
model_dim: int = 2560
|
|
|
|
num_heads: int = 32
|
|
|
|
num_layers: int = 32
|
|
|
|
rotary_dim: int = 32
|
|
|
|
num_experts_per_tok: int = 2
|
|
|
|
num_local_experts: int = 4
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_dict(cls, params):
|
|
|
|
return cls(
|
|
|
|
**{
|
|
|
|
k: v
|
|
|
|
for k, v in params.items()
|
|
|
|
if k in inspect.signature(cls).parameters
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
|
|
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
class RoPEAttention(nn.Module):
|
|
|
|
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.num_heads = num_heads
|
|
|
|
|
|
|
|
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
|
|
|
self.Wqkv = nn.Linear(dims, 3 * dims)
|
|
|
|
self.out_proj = nn.Linear(dims, dims)
|
|
|
|
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
|
|
qkv = self.Wqkv(x)
|
|
|
|
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
|
|
|
|
|
|
# Extract some shapes
|
|
|
|
num_heads = self.num_heads
|
|
|
|
B, L, D = queries.shape
|
|
|
|
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
# Add RoPE to the queries and keys and combine them with the cache
|
|
|
|
if cache is not None:
|
|
|
|
key_cache, value_cache = cache
|
|
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
|
|
|
queries = queries.astype(mx.float32)
|
|
|
|
keys = keys.astype(mx.float32)
|
|
|
|
|
|
|
|
# Finally perform the attention computation
|
|
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
|
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
|
|
|
if mask is not None:
|
|
|
|
scores = scores + mask
|
|
|
|
|
|
|
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
|
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
|
|
|
|
return self.out_proj(values_hat), (keys, values)
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, dim, hidden_dim):
|
|
|
|
super().__init__()
|
|
|
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
|
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
|
|
self.act = nn.GELU(approx="precise")
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
|
|
|
|
|
|
class MOE(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs, dim: int, hidden_dim: int):
|
|
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
|
|
self.hidden_dim = hidden_dim
|
|
|
|
self.num_experts = args.num_local_experts
|
|
|
|
self.num_experts_per_tok = args.num_experts_per_tok
|
|
|
|
self.mlp = [MLP(self.dim, self.hidden_dim) for _ in range(self.num_experts)]
|
|
|
|
self.gate = nn.Linear(args.model_dim, self.num_experts, bias=False)
|
|
|
|
|
2024-02-13 02:51:02 +08:00
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
2024-01-14 00:35:03 +08:00
|
|
|
ne = self.num_experts_per_tok
|
|
|
|
orig_shape = x.shape
|
|
|
|
x = x.reshape(-1, x.shape[-1])
|
|
|
|
|
|
|
|
gates = self.gate(x)
|
2024-02-13 02:51:02 +08:00
|
|
|
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne, axis=-1))[:, :ne]
|
2024-01-14 00:35:03 +08:00
|
|
|
scores = mx.softmax(
|
|
|
|
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
|
|
|
axis=-1,
|
|
|
|
).astype(gates.dtype)
|
|
|
|
|
2024-02-13 02:51:02 +08:00
|
|
|
if self.training:
|
|
|
|
ys = []
|
|
|
|
y = mx.zeros((x.shape[0], ne, x.shape[-1]))
|
|
|
|
for e, expert in enumerate(self.mlp):
|
|
|
|
idx1, idx2 = map(mx.array, np.where(inds == e))
|
|
|
|
if idx1.size == 0:
|
|
|
|
continue
|
|
|
|
y[idx1, idx2] = expert(x[idx1])
|
2024-01-14 00:35:03 +08:00
|
|
|
|
2024-02-13 02:51:02 +08:00
|
|
|
y = (y * scores[..., None]).sum(axis=1)
|
|
|
|
else:
|
|
|
|
y = []
|
|
|
|
for xt, st, it in zip(x, scores, inds.tolist()):
|
|
|
|
yt = mx.concatenate([self.mlp[e](xt)[:, None] for e in it], axis=-1)
|
|
|
|
yt = (yt * st).sum(axis=-1)
|
|
|
|
y.append(yt[None, :])
|
|
|
|
y = mx.concatenate(y)
|
|
|
|
|
|
|
|
return y.reshape(orig_shape)
|
2024-01-14 00:35:03 +08:00
|
|
|
|
|
|
|
|
|
|
|
class ParallelBlock(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
dims = config.model_dim
|
|
|
|
mlp_dims = dims * 4
|
|
|
|
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
|
|
|
self.ln = LayerNorm(dims)
|
|
|
|
self.moe = MOE(config, dims, mlp_dims)
|
|
|
|
|
|
|
|
def __call__(self, x, mask, cache):
|
|
|
|
h = self.ln(x)
|
|
|
|
attn_h, cache = self.mixer(h, mask, cache)
|
|
|
|
ff_h = self.moe(h)
|
|
|
|
return attn_h + ff_h + x, cache
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.embd = Embd(config)
|
|
|
|
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
|
|
|
|
|
|
|
def __call__(self, x, mask, cache):
|
|
|
|
x = self.embd(x)
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.h)
|
|
|
|
|
|
|
|
for e, layer in enumerate(self.h):
|
|
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
|
|
return x, cache
|
|
|
|
|
|
|
|
|
|
|
|
class Embd(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
return self.wte(x)
|
|
|
|
|
|
|
|
|
|
|
|
class OutputHead(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.ln = LayerNorm(config.model_dim)
|
|
|
|
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
|
|
|
|
|
|
|
def __call__(self, inputs):
|
|
|
|
return self.linear(self.ln(inputs))
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
2024-02-13 02:51:02 +08:00
|
|
|
self.model_type = config.model_type
|
2024-01-14 00:35:03 +08:00
|
|
|
self.transformer = TransformerDecoder(config)
|
|
|
|
self.lm_head = OutputHead(config)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: mx.array = None,
|
|
|
|
cache: mx.array = None,
|
2024-01-24 00:44:37 +08:00
|
|
|
) -> Tuple[mx.array, mx.array]:
|
2024-01-14 00:35:03 +08:00
|
|
|
mask = None
|
|
|
|
if x.shape[1] > 1:
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
|
|
mask = mask.astype(x.dtype)
|
|
|
|
|
|
|
|
y, cache = self.transformer(x, mask, cache)
|
|
|
|
return self.lm_head(y), cache
|