mlx-examples/llms/mlx_lm/models/mamba2.py

344 lines
12 KiB
Python
Raw Normal View History

2024-10-02 18:48:15 +08:00
import math
from dataclasses import dataclass, field
2024-11-06 23:35:46 +08:00
from typing import Tuple, Union
2024-10-20 22:11:39 +08:00
import mlx.core as mx
2024-10-21 00:04:34 +08:00
import mlx.nn as nn
2024-10-20 22:11:39 +08:00
2024-10-02 18:48:15 +08:00
from .base import BaseModelArgs
from .cache import Mamba2Cache
2024-10-02 18:48:15 +08:00
@dataclass
class ModelArgs(BaseModelArgs):
num_heads: int
head_dim: int
vocab_size: int
hidden_size: int
state_size: int
num_hidden_layers: int
layer_norm_epsilon: float
expand: int
conv_kernel: int
n_groups: int
use_bias: bool
use_conv_bias: bool
2024-10-21 00:04:34 +08:00
initializer_range: float
residual_in_fp32: bool
time_step_min: float
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
2024-11-06 23:35:46 +08:00
use_cache: bool = True
2024-10-02 18:48:15 +08:00
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
2024-10-02 18:48:15 +08:00
def __post_init__(self):
2024-11-06 23:35:46 +08:00
if not hasattr(self, "intermediate_size"):
self.intermediate_size = int(self.expand * self.hidden_size)
2024-10-02 18:48:15 +08:00
if not hasattr(self, "head_dim"):
self.head_dim = self.hidden_size // self.num_heads
if self.time_step_rank == "auto":
self.time_step_rank = math.ceil(self.hidden_size / 16)
2024-10-24 22:16:42 +08:00
2024-10-31 04:23:13 +08:00
class MambaRMSNormGated(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
2024-11-06 23:35:46 +08:00
self.weight = mx.ones((hidden_size,))
2024-10-31 04:23:13 +08:00
self.variance_epsilon = eps
2024-11-06 23:35:46 +08:00
def __call__(self, hidden_states, gate=None):
2024-10-31 04:23:13 +08:00
if gate is not None:
2024-11-06 23:35:46 +08:00
hidden_states = hidden_states * nn.silu(gate)
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
def silu(x):
return x * mx.sigmoid(x)
def ssd(x, A, B, C, chunk_size):
# Replace einsum operations with explicit reshape and matrix multiply
batch, seqlen, nheads, dim = x.shape
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
outputs = []
for i in range(0, seqlen, chunk_size):
chunk = slice(i, min(i + chunk_size, seqlen))
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
# Replace einsum with explicit operations
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
state = state * mx.expand_dims(dA, axis=-1) + dBx
# Replace einsum with explicit operations
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
outputs.append(y)
return mx.concatenate(outputs, axis=1), state
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.groups = groups if groups is not None else in_channels
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
# Initialize weight with correct shape [C_out, 1, kernel_size]
self.weight = mx.random.normal((out_channels, 1, kernel_size))
self.bias = mx.zeros((out_channels,)) if bias else None
def __call__(self, x: mx.array, cache=None) -> mx.array:
B, L, C = x.shape
K = self.kernel_size
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
# Handle caching for sequential processing
if cache is not None and cache.conv_states[0] is not None:
if isinstance(cache.conv_states[0], type(None)):
cache.conv_states[0] = mx.zeros((B, K-1, C))
x = mx.concatenate([cache.conv_states[0], x], axis=1)
2024-10-23 05:06:06 +08:00
2024-11-06 23:35:46 +08:00
# Process each channel independently
outputs = []
for c in range(C):
# Extract and reshape the channel
x_c = x[:, :, c] # [B, L]
x_c = mx.expand_dims(x_c, axis=1) # [B, 1, L]
# Get weight for this channel - already in correct shape [1, 1, K]
w_c = mx.expand_dims(self.weight[c], axis=0) # Ensure [1, 1, K]
# Apply convolution
y_c = mx.conv_general(
x_c,
w_c,
stride=1,
padding=self.padding
)
if self.bias is not None:
y_c = y_c + self.bias[c]
outputs.append(mx.squeeze(y_c, axis=1))
y = mx.stack(outputs, axis=-1)
# Update cache
if cache is not None:
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
return y
class Mamba2Block(nn.Module):
2024-10-21 00:04:34 +08:00
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.args = args
2024-10-31 04:23:13 +08:00
self.chunk_size = args.chunk_size
2024-11-06 23:35:46 +08:00
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
self.conv_dim = args.intermediate_size + 2 * args.state_size
self.conv1d = DepthWiseConv1d(
2024-10-31 04:23:13 +08:00
in_channels=self.conv_dim,
out_channels=self.conv_dim,
2024-11-06 23:35:46 +08:00
kernel_size=args.conv_kernel,
2024-10-31 04:23:13 +08:00
groups=self.conv_dim,
2024-11-06 23:35:46 +08:00
bias=args.use_conv_bias,
padding=args.conv_kernel - 1
2024-10-21 00:04:34 +08:00
)
2024-11-06 23:35:46 +08:00
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
2024-10-21 00:04:34 +08:00
2024-11-06 23:35:46 +08:00
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
if args.rescale_prenorm_residual:
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
self.out_proj.weight = self.out_proj.weight * layer_scale
def __call__(self, u: mx.array, cache=None):
# Expect input shape: [batch_size, 1, hidden_size]
batch_size, seq_len, _ = u.shape
pad_size = self.chunk_size - (seq_len % self.chunk_size)
# Initialize states if needed
if cache.conv_states[0] is None:
cache.conv_states[0] = mx.zeros((
batch_size,
self.args.conv_kernel - 1,
self.conv_dim
))
if cache.ssm_states[0] is None:
cache.ssm_states[0] = mx.zeros((
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
# Project input
zxbcdt = self.in_proj(u)
# Split projections
z = zxbcdt[:, :, :self.args.intermediate_size]
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
dt = zxbcdt[:, :, -(self.args.num_heads):]
# Process delta time
dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads))
dt = mx.squeeze(dt, axis=0) # Remove sequence dimension for single token
dt = mx.clip(
nn.softplus(dt + self.dt_bias),
2024-11-06 23:35:46 +08:00
self.args.time_step_min,
self.args.time_step_max
2024-10-24 22:16:42 +08:00
)
2024-11-06 23:35:46 +08:00
dt = mx.maximum(dt, self.args.time_step_floor)
# Convolution step
xBC = self.conv1d(xBC, cache=cache)
xBC = silu(xBC)
# Split conv output
x = xBC[:, :, :self.args.intermediate_size]
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
C = xBC[:, :, -self.args.state_size:]
# Reshape for SSM
x = mx.reshape(x, (batch_size, 1, self.args.num_heads, self.args.head_dim))
x = mx.squeeze(x, axis=1)
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size))
B = mx.expand_dims(B, axis=2)
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size))
C = mx.expand_dims(C, axis=3)
# SSM state update
2024-10-24 22:16:42 +08:00
A = -mx.exp(self.A_log)
2024-11-06 23:35:46 +08:00
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
x = mx.expand_dims(x, axis=3)
dBx = mx.matmul(x, B)
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
# Output computation
y = mx.matmul(cache.ssm_states[0], C)
y = mx.squeeze(y, axis=-1)
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
2024-10-31 04:23:13 +08:00
if pad_size > 0:
2024-11-06 23:35:46 +08:00
y = y[:, :seq_len, :, :]
# Final reshape and projections
y = mx.reshape(y, (batch_size, 1, self.args.num_heads * self.args.head_dim))
y = self.norm(y + z)
2024-10-02 18:48:15 +08:00
2024-10-31 04:23:13 +08:00
return self.out_proj(y)
2024-11-06 23:35:46 +08:00
2024-10-02 18:48:15 +08:00
2024-10-21 00:04:34 +08:00
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.residual_in_fp32 = args.residual_in_fp32
self.mixer = Mamba2Block(args)
2024-10-12 02:53:29 +08:00
self.norm = nn.RMSNorm(args.hidden_size)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
if self.residual_in_fp32:
x = x.astype(mx.float32)
2024-10-12 02:53:29 +08:00
return self.mixer(self.norm(x), cache) + x
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
class Mamba2(nn.Module):
2024-10-02 18:48:15 +08:00
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
2024-10-21 00:04:34 +08:00
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
2024-10-02 18:48:15 +08:00
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
2024-10-21 00:04:34 +08:00
x = self.embeddings(x)
2024-10-02 18:48:15 +08:00
if cache is None:
2024-10-21 00:04:34 +08:00
cache = [None] * len(self.layers)
2024-11-06 23:35:46 +08:00
for layer, c in zip(self.layers, cache):
x = layer(x, c)
2024-10-31 04:23:13 +08:00
return self.norm_f(x)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
2024-10-02 18:48:15 +08:00
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
2024-11-06 23:35:46 +08:00
self.model_type = args.model_type
self.backbone = Mamba2(args)
2024-10-02 18:48:15 +08:00
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
2024-11-06 23:35:46 +08:00
def __call__(self, inputs: mx.array, cache=None):
2024-10-02 18:48:15 +08:00
B, T = inputs.shape
x = self.backbone(inputs, cache)
if self.args.tie_word_embeddings:
logits = self.backbone.embeddings.as_linear(x)
else:
logits = self.lm_head(x)
2024-10-12 02:53:29 +08:00
2024-10-02 18:48:15 +08:00
return logits
2024-11-06 23:35:46 +08:00
def make_cache(self, batch_size=1):
2024-11-06 23:35:46 +08:00
return [Mamba2Cache(batch_size, self.args.conv_kernel) for _ in range(len(self.layers))]
def sanitize(self, weights):
2024-11-06 23:35:46 +08:00
sanitized = {}
for k, v in weights.items():
2024-11-06 23:35:46 +08:00
if "conv1d.weight" in k:
# Ensure weights are in correct shape (channels, 1, kernel_size)
if v.ndim == 2:
v = mx.expand_dims(v, axis=1)
elif v.ndim == 1:
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
sanitized[k] = v
else:
sanitized[k] = v
return sanitized
2024-10-31 04:23:13 +08:00
@property
def layers(self):
return self.backbone.layers