mlx-examples/llms/mlx_lm/lora.py

272 lines
7.6 KiB
Python
Raw Normal View History

# Copyright © 2024 Apple Inc.
import argparse
import math
import re
import types
from pathlib import Path
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
import yaml
from mlx.utils import tree_flatten
from .tuner.datasets import load_dataset
from .tuner.trainer import TrainingArgs, TrainingCallback, evaluate, train
from .tuner.utils import apply_lora_layers, build_schedule, linear_to_lora_layers
from .utils import load, save_config
yaml_loader = yaml.SafeLoader
yaml_loader.add_implicit_resolver(
"tag:yaml.org,2002:float",
re.compile(
"""^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$""",
re.X,
),
list("-+0123456789."),
)
CONFIG_DEFAULTS = {
"model": "mlx_model",
"train": False,
"data": "data/",
"seed": 0,
"lora_layers": 16,
"batch_size": 4,
"iters": 1000,
"val_batches": 25,
"learning_rate": 1e-5,
"steps_per_report": 10,
"steps_per_eval": 200,
"resume_adapter_file": None,
"adapter_path": "adapters",
"save_every": 100,
"test": False,
"test_batches": 500,
"max_seq_length": 2048,
"lr_schedule": None,
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
}
def build_parser():
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
help="The path to the local model directory or Hugging Face repo.",
)
# Training args
parser.add_argument(
"--train",
action="store_true",
help="Do training",
)
parser.add_argument(
"--data",
type=str,
help="Directory with {train, valid, test}.jsonl files",
)
parser.add_argument(
"--lora-layers",
type=int,
help="Number of layers to fine-tune",
)
parser.add_argument("--batch-size", type=int, help="Minibatch size.")
parser.add_argument("--iters", type=int, help="Iterations to train for.")
parser.add_argument(
"--val-batches",
type=int,
help="Number of validation batches, -1 uses the entire validation set.",
)
parser.add_argument("--learning-rate", type=float, help="Adam learning rate.")
parser.add_argument(
"--steps-per-report",
type=int,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps-per-eval",
type=int,
help="Number of training steps between validations.",
)
parser.add_argument(
"--resume-adapter-file",
type=str,
help="Load path to resume training with the given adapters.",
)
parser.add_argument(
"--adapter-path",
type=str,
help="Save/load path for the adapters.",
)
parser.add_argument(
"--save-every",
type=int,
help="Save the model every N iterations.",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training",
)
parser.add_argument(
"--test-batches",
type=int,
help="Number of test set batches, -1 uses the entire test set.",
)
parser.add_argument(
"--max-seq-length",
type=int,
help="Maximum sequence length.",
)
parser.add_argument(
"-c",
"--config",
default=None,
help="A YAML configuration file with the training options",
)
parser.add_argument(
"--grad-checkpoint",
action="store_true",
help="Use gradient checkpointing to reduce memory use.",
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
return parser
def print_trainable_parameters(model):
def nparams(m):
if isinstance(m, nn.QuantizedLinear):
return m.weight.size * (32 // m.bits)
return sum(v.size for _, v in tree_flatten(m.parameters()))
leaf_modules = tree_flatten(
model.leaf_modules(), is_leaf=lambda m: isinstance(m, nn.Module)
)
total_p = sum(nparams(m) for _, m in leaf_modules) / 10**6
trainable_p = (
sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
)
print(
f"Trainable parameters: {(trainable_p * 100 / total_p):.3f}% "
f"({trainable_p:.3f}M/{total_p:.3f}M)"
)
def run(args, training_callback: TrainingCallback = None):
np.random.seed(args.seed)
print("Loading pretrained model")
model, tokenizer = load(args.model)
# Freeze all layers
model.freeze()
adapter_path = Path(args.adapter_path)
adapter_file = adapter_path / "adapters.safetensors"
if args.test and not args.train:
apply_lora_layers(model, adapter_path)
else:
adapter_path.mkdir(parents=True, exist_ok=True)
save_config(vars(args), adapter_path / "adapter_config.json")
# Convert linear layers to lora layers and unfreeze in the process
linear_to_lora_layers(model, args.lora_layers, args.lora_parameters)
print_trainable_parameters(model)
print("Loading datasets")
train_set, valid_set, test_set = load_dataset(args, tokenizer)
# Resume training the given adapters.
if args.resume_adapter_file is not None:
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
model.load_weights(args.resume_adapter_file, strict=False)
if args.train:
print("Training")
# init training args
training_args = TrainingArgs(
batch_size=args.batch_size,
iters=args.iters,
val_batches=args.val_batches,
steps_per_report=args.steps_per_report,
steps_per_eval=args.steps_per_eval,
steps_per_save=args.save_every,
adapter_file=adapter_file,
max_seq_length=args.max_seq_length,
grad_checkpoint=args.grad_checkpoint,
)
model.train()
opt = optim.Adam(
learning_rate=(
build_schedule(args.lr_schedule)
if args.lr_schedule
else args.learning_rate
)
)
# Train model
train(
model=model,
tokenizer=tokenizer,
args=training_args,
optimizer=opt,
train_dataset=train_set,
val_dataset=valid_set,
training_callback=training_callback,
)
if args.test:
print("Testing")
model.eval()
test_loss = evaluate(
model=model,
dataset=test_set,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.test_batches,
max_seq_length=args.max_seq_length,
)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
def main():
parser = build_parser()
args = parser.parse_args()
config = args.config
args = vars(args)
if config:
print("Loading configuration file", config)
with open(config, "r") as file:
config = yaml.load(file, yaml_loader)
# Prefer parameters from command-line arguments
for k, v in config.items():
if not args.get(k, None):
args[k] = v
# Update defaults for unspecified parameters
for k, v in CONFIG_DEFAULTS.items():
if not args.get(k, None):
args[k] = v
run(types.SimpleNamespace(**args))
if __name__ == "__main__":
main()