mlx-examples/clip/model.py

284 lines
9.3 KiB
Python
Raw Normal View History

# Copyright © 2023-2024 Apple Inc.
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Optional
import mlx.core as mx
import mlx.nn as nn
from mlx.core import linalg as LA
from mlx.nn.losses import cross_entropy
from mlx.utils import tree_flatten
@dataclass
class CLIPVisionOutput:
pooler_output: mx.array
last_hidden_state: mx.array
@dataclass
class CLIPTextOutput:
pooler_output: mx.array
last_hidden_state: mx.array
@dataclass
class CLIPModelOutput:
loss: Optional[mx.array]
text_embeds: Optional[mx.array]
image_embeds: Optional[mx.array]
text_model_output: CLIPTextOutput
vision_model_output: CLIPVisionOutput
@dataclass
class CLIPTextConfig:
num_hidden_layers: int
hidden_size: int
intermediate_size: int
num_attention_heads: int
max_position_embeddings: int
vocab_size: int
@dataclass
class CLIPVisionConfig:
num_hidden_layers: int
hidden_size: int
intermediate_size: int
num_attention_heads: int
num_channels: int
image_size: int
patch_size: int
@dataclass
class CLIPConfig:
text_config: CLIPTextConfig
vision_config: CLIPVisionConfig
projection_dim: int
def quick_gelu(x: mx.array) -> mx.array:
"""
A fast GELU approximation https://github.com/hendrycks/GELUs
"""
return x * mx.sigmoid(1.702 * x)
def clip_loss(logits: mx.array) -> mx.array:
N, M = logits.shape
caption_loss = cross_entropy(logits, mx.arange(N), reduction="mean")
image_loss = cross_entropy(logits.T, mx.arange(M), reduction="mean")
return (caption_loss + image_loss) / 2.0
class CLIPEncoderLayer(nn.TransformerEncoderLayer):
"""The transformer encoder layer from CLIP."""
def __init__(self, hidden_dim: int, intermediate_dim: int, num_heads: int):
super().__init__(
dims=hidden_dim,
mlp_dims=intermediate_dim,
num_heads=num_heads,
activation=quick_gelu,
norm_first=True,
)
# Add biases to the attention projections
self.attention = nn.MultiHeadAttention(hidden_dim, num_heads, bias=True)
class CLIPTextModel(nn.Module):
"""Implements the text encoder transformer from CLIP."""
def __init__(self, config: CLIPTextConfig):
super().__init__()
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embedding = mx.zeros(
(config.max_position_embeddings, config.hidden_size)
)
self.layers = [
CLIPEncoderLayer(
config.hidden_size, config.intermediate_size, config.num_attention_heads
)
for _ in range(config.num_hidden_layers)
]
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
def _embed(self, x: mx.array) -> mx.array:
embeddings = self.token_embedding(x)
embeddings += self.position_embedding[: x.shape[1]]
return embeddings
def __call__(self, x: mx.array) -> CLIPTextOutput:
B, N = x.shape
eot_tokens = mx.argmax(x, axis=-1)
x = self._embed(x)
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
for l in self.layers:
x = l(x, mask)
last_hidden_state = self.final_layer_norm(x)
pooler_output = last_hidden_state[mx.arange(B), eot_tokens]
return CLIPTextOutput(
pooler_output=pooler_output, last_hidden_state=last_hidden_state
)
class CLIPVisionModel(nn.Module):
"""Implements the vision encoder transformer from CLIP."""
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.class_embedding = mx.zeros((config.hidden_size,))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=config.patch_size,
stride=config.patch_size,
bias=False,
)
num_patches = (config.image_size // config.patch_size) ** 2
num_positions = num_patches + 1
self.position_embedding = mx.zeros((num_positions, config.hidden_size))
self.pre_layernorm = nn.LayerNorm(config.hidden_size)
self.layers = [
CLIPEncoderLayer(
config.hidden_size, config.intermediate_size, config.num_attention_heads
)
for _ in range(config.num_hidden_layers)
]
self.post_layernorm = nn.LayerNorm(config.hidden_size)
def _embed(self, x: mx.array) -> mx.array:
batch_size = x.shape[0]
# Patchify using conv:
# [batch_size, sqrt(num_patches), sqrt(num_patches), embed_dim]
patch_embeddings = self.patch_embedding(x)
# [batch_size, num_patches, embed_dim]
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
embed_dim = patch_embeddings.shape[-1]
# Prepend <CLS> embeddings
# [batch_size, 1, embed_dim]
cls_embeddings = mx.broadcast_to(
self.class_embedding, (batch_size, 1, embed_dim)
)
# [batch_size, num_patches + 1, embed_dim]
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
# Add positional encoding
embeddings += self.position_embedding
return embeddings
def __call__(self, x: mx.array) -> CLIPVisionOutput:
x = self._embed(x)
x = self.pre_layernorm(x)
for l in self.layers:
x = l(x, mask=None)
# Extract <CLS> token embedding
pooler_output = self.post_layernorm(x[:, 0, :])
return CLIPVisionOutput(pooler_output=pooler_output, last_hidden_state=x)
class CLIPModel(nn.Module):
def __init__(self, config: CLIPConfig):
self.text_model = CLIPTextModel(config.text_config)
self.vision_model = CLIPVisionModel(config.vision_config)
text_embed_dim = config.text_config.hidden_size
vision_embed_dim = config.vision_config.hidden_size
projection_dim = config.projection_dim
self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
self.text_projection = nn.Linear(text_embed_dim, projection_dim, bias=False)
self.logit_scale = mx.array(0.0)
def get_text_features(self, x: mx.array) -> mx.array:
return self.text_projection(self.text_model(x).pooler_output)
def get_image_features(self, x: mx.array) -> mx.array:
return self.visual_projection(self.vision_model(x).pooler_output)
def __call__(
self,
input_ids: Optional[mx.array] = None,
pixel_values: Optional[mx.array] = None,
return_loss=False,
) -> CLIPModelOutput:
if input_ids is not None:
text_model_output = self.text_model(input_ids)
text_embeds = self.text_projection(text_model_output.pooler_output)
text_embeds = text_embeds / LA.norm(text_embeds, axis=-1, keepdims=True)
else:
text_embeds = None
text_model_output = None
if pixel_values is not None:
vision_model_output = self.vision_model(pixel_values)
image_embeds = self.visual_projection(vision_model_output.pooler_output)
image_embeds = image_embeds / LA.norm(image_embeds, axis=-1, keepdims=True)
else:
image_embeds = None
vision_model_output = None
if return_loss and (input_ids is None or pixel_values is None):
raise ValueError("Must provide text and image inputs to compute loss.")
if return_loss:
logit_scale = mx.exp(self.logit_scale)
logits = (text_embeds @ image_embeds.T) * logit_scale
loss = clip_loss(logits)
else:
loss = None
return CLIPModelOutput(
loss=loss,
text_embeds=text_embeds,
image_embeds=image_embeds,
vision_model_output=vision_model_output,
text_model_output=text_model_output,
)
@staticmethod
def from_pretrained(path: str):
path = Path(path)
with open(path / "config.json", "r") as fid:
config = json.load(fid)
text_config = config["text_config"]
text_config = CLIPTextConfig(
num_hidden_layers=text_config["num_hidden_layers"],
hidden_size=text_config["hidden_size"],
intermediate_size=text_config["intermediate_size"],
num_attention_heads=text_config["num_attention_heads"],
max_position_embeddings=text_config["max_position_embeddings"],
vocab_size=text_config["vocab_size"],
)
vision_config = config["vision_config"]
vision_config = CLIPVisionConfig(
num_hidden_layers=vision_config["num_hidden_layers"],
hidden_size=vision_config["hidden_size"],
intermediate_size=vision_config["intermediate_size"],
num_attention_heads=vision_config["num_attention_heads"],
num_channels=3,
image_size=vision_config["image_size"],
patch_size=vision_config["patch_size"],
)
config = CLIPConfig(
text_config=text_config,
vision_config=vision_config,
projection_dim=config["projection_dim"],
)
model = CLIPModel(config)
model.load_weights(str(path / "weights.npz"))
return model