2024-06-13 22:47:16 +08:00
|
|
|
from dataclasses import dataclass
|
2024-06-13 22:47:56 +08:00
|
|
|
from typing import Optional, Tuple
|
2024-06-13 22:47:16 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
|
|
|
from .base import BaseModelArgs, create_additive_causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ParamsArgs(BaseModelArgs):
|
|
|
|
dim: int
|
|
|
|
ffn_type: str
|
|
|
|
n_heads: int
|
|
|
|
n_layers: int
|
|
|
|
norm_eps: float
|
|
|
|
positional_embedding_type: str
|
|
|
|
post_embed_norm: bool
|
|
|
|
qk_norm: bool
|
|
|
|
vocab_size: int
|
|
|
|
weight_tying: bool
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
|
|
|
model_type: str
|
|
|
|
params_args_dict: ParamsArgs
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.dim = args.dim
|
|
|
|
self.n_heads = args.n_heads
|
|
|
|
self.head_dim = self.dim // self.n_heads
|
|
|
|
self.qk_norm = args.qk_norm
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
|
|
|
|
self.in_proj = nn.Linear(self.dim, 3 * self.dim, bias=False)
|
|
|
|
self.out_proj = nn.Linear(self.dim, self.dim, bias=False)
|
|
|
|
if self.qk_norm:
|
|
|
|
self.q_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False)
|
|
|
|
self.k_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False)
|
|
|
|
self.rope = nn.RoPE(
|
|
|
|
self.head_dim,
|
|
|
|
traditional=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
queries, keys, values = self.in_proj(x).split(3, axis=-1)
|
|
|
|
|
|
|
|
if self.qk_norm:
|
|
|
|
queries = self.q_norm(queries)
|
|
|
|
keys = self.q_norm(keys)
|
|
|
|
|
|
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
|
|
)
|
|
|
|
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.out_proj(output)
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
# https://github.com/mlfoundations/open_lm/blob/c65b43042ff31c0fe26f930decf1ccab1b03ab4b/open_lm/model.py#L254C2-L254C3
|
|
|
|
hidden_dim = 256 * ((int(2 * 4 * args.dim / 3) + 256 - 1) // 256)
|
|
|
|
self.w12 = nn.Linear(args.dim, 2 * hidden_dim, bias=False)
|
|
|
|
self.w3 = nn.Linear(hidden_dim, args.dim, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
gate, x = self.w12(x).split(2, axis=-1)
|
|
|
|
return self.w3(nn.silu(gate) * x)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.attention = Attention(args)
|
|
|
|
self.feed_forward = MLP(args)
|
|
|
|
self.ffn_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False)
|
|
|
|
self.attention_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
r = self.attention(self.attention_norm(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.feed_forward(self.ffn_norm(h))
|
|
|
|
out = h + r
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class OpenLM(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
|
|
|
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
|
|
|
self.norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False)
|
|
|
|
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
):
|
|
|
|
_, L = inputs.shape
|
|
|
|
|
|
|
|
h = self.tok_embeddings(inputs)
|
|
|
|
|
|
|
|
mask = None
|
|
|
|
if h.shape[1] > 1:
|
|
|
|
mask = create_additive_causal_mask(
|
|
|
|
h.shape[1], cache[0].offset if cache is not None else 0
|
|
|
|
)
|
|
|
|
mask = mask.astype(h.dtype)
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
|
|
h = layer(h, mask, cache=c)
|
|
|
|
|
|
|
|
return self.output(self.norm(h))
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
args.params_args_dict = ParamsArgs.from_dict(args.params_args_dict)
|
|
|
|
self.args = args.params_args_dict
|
|
|
|
self.model_type = args.model_type
|
|
|
|
self.model = OpenLM(self.args)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
):
|
|
|
|
out = self.model(inputs, cache)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def sanitize(self, weights):
|
|
|
|
# Remove unused precomputed rotary freqs
|
|
|
|
return {k: v for k, v in weights.items() if "inv_freq" not in k}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.model.layers
|
|
|
|
|
|
|
|
@property
|
|
|
|
def head_dim(self):
|
|
|
|
return self.args.dim // self.args.n_heads
|
|
|
|
|
|
|
|
@property
|
|
|
|
def n_kv_heads(self):
|
|
|
|
return self.args.n_heads
|