mlx-examples/transformer_lm/tf_main.py

252 lines
8.4 KiB
Python
Raw Normal View History

2023-12-01 03:08:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 00:17:26 +08:00
import math
import time
import numpy as np
import tensorflow as tf
import datasets
def to_samples(context_size, dataset):
tokens = dataset.size
window_size = context_size + 1 # include target
samples = tokens - window_size + 1
X = np.lib.stride_tricks.as_strided(
dataset,
shape=(samples, window_size),
strides=(dataset.itemsize, dataset.itemsize),
)
return X[:, :-1], X[:, 1:]
def iterate_batches(batch_size, context_size, dataset):
inputs, targets = to_samples(context_size, dataset)
s = 0
while True:
if s == 0:
# Reset permutation:
perm = np.random.permutation(inputs.shape[0])
ids = perm[s : s + batch_size]
yield inputs[ids], targets[ids]
s += batch_size
if s + batch_size >= inputs.shape[0]:
s = 0
def create_additive_causal_mask(N):
indices = tf.range(N)
mask = tf.reshape(indices, (-1, 1)) < tf.reshape(indices, (1, -1))
return tf.cast(mask, tf.dtypes.float32) * -1e9
class SelfAttention(tf.keras.layers.Layer):
def __init__(self, num_heads, model_dims, context_size):
super().__init__()
self.Wq = tf.keras.layers.Dense(model_dims, use_bias=False)
self.Wk = tf.keras.layers.Dense(model_dims, use_bias=False)
self.Wv = tf.keras.layers.Dense(model_dims, use_bias=False)
self.Wo = tf.keras.layers.Dense(model_dims, use_bias=False)
self.causal_mask = create_additive_causal_mask(context_size)
self.num_heads = num_heads
self.head_dim = model_dims // num_heads
self.scale = tf.constant(1.0 / math.sqrt(self.head_dim))
def call(self, x):
queries = self.Wq(x)
keys = self.Wk(x)
values = self.Wv(x)
B, L, D = x.shape
queries = tf.transpose(
tf.reshape(queries, (B, L, self.num_heads, -1)), perm=(0, 2, 1, 3)
)
keys = tf.transpose(
tf.reshape(keys, (B, L, self.num_heads, -1)), perm=(0, 2, 1, 3)
)
values = tf.transpose(
tf.reshape(values, (B, L, self.num_heads, -1)), perm=(0, 2, 1, 3)
)
scores = (self.scale * queries) @ tf.transpose(keys, (0, 1, 3, 2))
scores = tf.nn.softmax(scores + self.causal_mask, axis=-1)
values = tf.matmul(scores, values)
values_hat = tf.reshape(tf.transpose(values, perm=(0, 2, 1, 3)), (B, L, -1))
return self.Wo(values_hat)
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, num_heads, model_dims, context_size):
super().__init__()
self._ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self._self_attn = SelfAttention(num_heads, model_dims, context_size)
self._ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self._mlp = tf.keras.Sequential(
[
tf.keras.layers.Dense(4 * model_dims, activation="relu"),
tf.keras.layers.Dense(model_dims),
]
)
def call(self, x):
x = x + self._self_attn(self._ln1(x))
x = x + self._mlp(self._ln2(x))
return x
class TransformerLM(tf.keras.Model):
def __init__(self, vocab_size, num_layers, num_heads, model_dims, context_size):
super().__init__()
self.embedding = tf.keras.layers.Embedding(vocab_size, model_dims)
self.transformer = tf.keras.Sequential(
[
EncoderLayer(num_heads, model_dims, context_size)
for _ in range(num_layers)
]
)
self.projection = tf.keras.layers.Dense(vocab_size)
def call(self, x):
x = self.embedding(x)
x = self.transformer(x)
x = self.projection(x)
return x
def main(args, device):
with tf.device(device):
batch_size = args.batch_size
context_size = args.context_size
steps_per_eval = args.steps_per_eval
steps_per_report = args.steps_per_report
# Load vocab and dataset:
vocab, train, valid, test = datasets.ptb()
# Initialize model:
transformer = TransformerLM(
len(vocab), args.num_blocks, args.num_heads, args.dim, context_size
)
transformer.compile(
optimizer=tf.keras.optimizers.legacy.SGD(learning_rate=args.learning_rate),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
transformer.build((batch_size, context_size))
nparams = sum(
np.prod(p.shape) for p in transformer.trainable_weights[1:]
) # [1:] to skip the embedding
print(f"Training a transformer with {nparams / 1024**2:.3f} M parameters")
def eval_fn(dataset):
inputs, targets = to_samples(context_size, dataset)
loss = 0
n_batches = 0
for s in range(0, targets.shape[0], batch_size):
if s + batch_size >= targets.shape[0]:
s = targets.shape[0] - 1 - batch_size
bx, by = inputs[s : s + batch_size], targets[s : s + batch_size]
bx, by = map(
lambda x: tf.convert_to_tensor(x, dtype=tf.dtypes.int32),
[bx, by],
)
loss += transformer.test_on_batch(bx, by)
n_batches += 1
return loss / n_batches
train_iterator = iterate_batches(batch_size, context_size, train)
losses = []
tic = time.perf_counter()
for it, (inputs, targets) in zip(range(args.num_iters), train_iterator):
inputs, targets = map(
lambda x: tf.convert_to_tensor(x, dtype=tf.dtypes.int32),
[inputs, targets],
)
loss = transformer.train_on_batch(inputs, targets)
losses.append(loss)
if (it + 1) % steps_per_report == 0:
train_loss = np.mean(losses)
toc = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {steps_per_report / (toc - tic):.3f}"
)
losses = []
tic = time.perf_counter()
if (it + 1) % steps_per_eval == 0:
val_loss = eval_fn(valid)
toc = time.perf_counter()
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val ppl {math.exp(val_loss):.3f}, "
f"Val took {(toc - tic):.3f}s, "
)
tic = time.perf_counter()
if args.eval_test:
test_loss = eval_fn(test)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Train a decoder-only Transformer LM with MLX.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
parser.add_argument("--seed", type=int, default=42, help="Seed for the RNGs.")
parser.add_argument(
"--context_size",
type=int,
default=1024,
help="Context size in tokens of the model.",
)
parser.add_argument(
"--num_blocks", type=int, default=12, help="Number of Transformer blocks."
)
parser.add_argument(
"--dim",
type=int,
default=1024,
help="Dimensionality of embeddings and hidden layers.",
)
parser.add_argument(
"--num_heads",
type=int,
default=16,
help="Number of heads used for multi-head attention",
)
parser.add_argument("--batch_size", type=int, default=2, help="Minibatch size.")
parser.add_argument(
"--num_iters", type=int, default=100000, help="Iterations to train for."
)
parser.add_argument(
"--learning_rate", type=float, default=1e-3, help="SGD learning rate."
)
parser.add_argument(
"--steps_per_report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps_per_eval",
type=int,
default=1000,
help="Number of training steps between validations.",
)
parser.add_argument(
"--eval_test",
action="store_true",
help="Evaluate on the test set after training",
)
args = parser.parse_args()
main(args, device="/GPU:0" if args.gpu else "/CPU:0")