mlx-examples/video/Wan2.1/wan/wan_model_io.py

228 lines
7.2 KiB
Python
Raw Normal View History

2025-07-29 06:51:11 +08:00
from typing import List, Tuple
import os
import mlx.core as mx
from mlx.utils import tree_unflatten
from safetensors import safe_open
import torch
import numpy as np
def map_wan_weights(key: str, value: mx.array) -> List[Tuple[str, mx.array]]:
# Remove .layers. from PyTorch Sequential to match MLX Python lists
key = key.replace(".layers.", ".")
# Handle conv transpose if needed
if "patch_embedding.weight" in key:
value = mx.transpose(value, (0, 2, 3, 4, 1))
return [(key, value)]
def _flatten(params: List[List[Tuple[str, mx.array]]]) -> List[Tuple[str, mx.array]]:
"""Flatten nested list of parameter tuples"""
return [(k, v) for p in params for (k, v) in p]
def load_wan_from_safetensors(
safetensors_path: str,
model,
float16: bool = False
):
"""
Load WanModel weights from safetensors file(s) into MLX model.
"""
import os
import glob
if os.path.isdir(safetensors_path):
# Multiple files (14B model) - only diffusion_mlx_model files
pattern = os.path.join(safetensors_path, "diffusion_mlx_model*.safetensors")
safetensor_files = sorted(glob.glob(pattern))
print(f"Found {len(safetensor_files)} diffusion_mlx_model safetensors files")
# Load all files and merge weights
all_weights = {}
for file_path in safetensor_files:
print(f"Loading: {file_path}")
weights = mx.load(file_path)
all_weights.update(weights)
model.update(tree_unflatten(list(all_weights.items())))
else:
# Single file (1.3B model)
print(f"Loading single file: {safetensors_path}")
weights = mx.load(safetensors_path)
model.update(tree_unflatten(list(weights.items())))
print("WanModel weights loaded successfully!")
return model
def convert_safetensors_to_mlx_weights(
safetensors_path: str,
output_path: str,
float16: bool = False
):
"""
Convert safetensors file to MLX weights file.
Args:
safetensors_path: Input safetensors file
output_path: Output MLX weights file (.safetensors)
float16: Whether to use float16 precision
"""
dtype = mx.float16 if float16 else mx.float32
print(f"Converting safetensors to MLX format...")
print(f"Input: {safetensors_path}")
print(f"Output: {output_path}")
print(f"Target dtype: {dtype}")
# Load and convert weights
weights = {}
bfloat16_count = 0
original_keys = []
with safe_open(safetensors_path, framework="pt", device="cpu") as f:
original_keys = list(f.keys()) # Store keys before closing
print(f"Processing {len(original_keys)} parameters...")
for key in original_keys:
tensor = f.get_tensor(key)
# Handle BFloat16
if tensor.dtype == torch.bfloat16:
bfloat16_count += 1
tensor = tensor.float() # Convert to float32 first
value = mx.array(tensor.numpy()).astype(dtype)
# Apply mapping
mapped = map_wan_weights(key, value)
for new_key, new_value in mapped:
weights[new_key] = new_value
if bfloat16_count > 0:
print(f"⚠️ Converted {bfloat16_count} BFloat16 tensors to {dtype}")
# Print mapping summary
skipped = len(original_keys) - len(weights)
if skipped > 0:
print(f" Skipped {skipped} activation layer parameters")
# Save as MLX format
print(f"Saving {len(weights)} parameters to: {output_path}")
mx.save_safetensors(output_path, weights)
# Print a few example keys for verification
print("\nExample converted keys:")
for i, key in enumerate(sorted(weights.keys())[:10]):
print(f" {key}: {weights[key].shape}")
return weights
def convert_multiple_safetensors_to_mlx(
checkpoint_dir: str,
float16: bool = False
):
"""Convert multiple PyTorch safetensors files to MLX format."""
import glob
# Find all PyTorch model files
pytorch_pattern = os.path.join(checkpoint_dir, "diffusion_pytorch_model-*.safetensors")
pytorch_files = sorted(glob.glob(pytorch_pattern))
if not pytorch_files:
raise FileNotFoundError(f"No PyTorch model files found matching: {pytorch_pattern}")
print(f"Converting {len(pytorch_files)} PyTorch files to MLX format...")
for i, pytorch_file in enumerate(pytorch_files, 1):
# Extract the suffix (e.g., "00001-of-00006")
basename = os.path.basename(pytorch_file)
suffix = basename.replace("diffusion_pytorch_model-", "").replace(".safetensors", "")
# Create MLX filename
mlx_file = os.path.join(checkpoint_dir, f"diffusion_mlx_model-{suffix}.safetensors")
print(f"Converting {i}/{len(pytorch_files)}: {basename}")
convert_safetensors_to_mlx_weights(pytorch_file, mlx_file, float16)
print("All files converted successfully!")
def debug_weight_mapping(safetensors_path: str, float16: bool = False):
"""
Debug function to see how weights are being mapped.
"""
dtype = mx.float16 if float16 else mx.float32
print("=== WAN Weight Mapping Debug ===")
with safe_open(safetensors_path, framework="pt", device="cpu") as f:
# Check first 20 keys to see the mapping
for i, key in enumerate(f.keys()):
if i >= 20:
break
tensor = f.get_tensor(key)
# Handle BFloat16
original_dtype = tensor.dtype
if tensor.dtype == torch.bfloat16:
tensor = tensor.float()
value = mx.array(tensor.numpy()).astype(dtype)
# Apply mapping
mapped = map_wan_weights(key, value)
if len(mapped) == 0:
print(f"SKIPPED: {key} ({original_dtype})")
elif len(mapped) == 1:
new_key, new_value = mapped[0]
if new_key == key:
print(f"DIRECT: {key} ({original_dtype}) [{tensor.shape}]")
else:
print(f"MAPPED: {key} -> {new_key} [{tensor.shape}]")
def check_model_structure(model):
"""
Print the structure of an MLX model to debug loading issues.
"""
from mlx.utils import tree_flatten
print("=== Model Structure ===")
params = dict(tree_flatten(model))
print(f"Model has {len(params)} parameters")
print("\nFirst 20 parameter names:")
for i, (key, value) in enumerate(params.items()):
if i >= 20:
break
print(f" {key}: {value.shape}")
return params
# Example usage
if __name__ == "__main__":
import sys
if len(sys.argv) < 3:
print("Usage: python wan_model_io.py <input.safetensors> <output.safetensors> [--fp16]")
sys.exit(1)
input_file = sys.argv[1]
output_file = sys.argv[2]
use_fp16 = "--fp16" in sys.argv
# Debug the mapping first (optional)
debug_weight_mapping(input_file, use_fp16)
# Convert weights
convert_safetensors_to_mlx_weights(input_file, output_file, float16=use_fp16)
print("Conversion complete!")