mlx-examples/video/Wan2.1/wan/modules/model_mlx.py

787 lines
27 KiB
Python
Raw Normal View History

2025-07-29 06:51:11 +08:00
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
# MLX Implementation of WAN Model - True 1:1 Port from PyTorch
import math
from typing import List, Tuple, Optional
import mlx.core as mx
import mlx.nn as nn
import numpy as np
__all__ = ['WanModel']
def sinusoidal_embedding_1d(dim: int, position: mx.array) -> mx.array:
"""Generate sinusoidal position embeddings."""
assert dim % 2 == 0
half = dim // 2
position = position.astype(mx.float32)
# Calculate sinusoidal embeddings
div_term = mx.power(10000, mx.arange(half).astype(mx.float32) / half)
sinusoid = mx.expand_dims(position, 1) / mx.expand_dims(div_term, 0)
return mx.concatenate([mx.cos(sinusoid), mx.sin(sinusoid)], axis=1)
def rope_params(max_seq_len: int, dim: int, theta: float = 10000) -> mx.array:
"""Generate RoPE (Rotary Position Embedding) parameters."""
assert dim % 2 == 0
positions = mx.arange(max_seq_len)
freqs = mx.arange(0, dim, 2).astype(mx.float32) / dim
freqs = 1.0 / mx.power(theta, freqs)
# Outer product
freqs = mx.expand_dims(positions, 1) * mx.expand_dims(freqs, 0)
# Convert to complex representation
return mx.stack([mx.cos(freqs), mx.sin(freqs)], axis=-1)
def rope_apply(x: mx.array, grid_sizes: mx.array, freqs: mx.array) -> mx.array:
"""Apply rotary position embeddings to input tensor."""
n, c_half = x.shape[2], x.shape[3] // 2
# Split frequencies for different dimensions
c_split = c_half - 2 * (c_half // 3)
freqs_splits = [
freqs[:, :c_split],
freqs[:, c_split:c_split + c_half // 3],
freqs[:, c_split + c_half // 3:]
]
output = []
for i in range(grid_sizes.shape[0]):
f, h, w = int(grid_sizes[i, 0]), int(grid_sizes[i, 1]), int(grid_sizes[i, 2])
seq_len = f * h * w
# Extract sequence for current sample
x_i = x[i, :seq_len].astype(mx.float32)
x_i = x_i.reshape(seq_len, n, -1, 2)
# Prepare frequency tensors
freqs_f = freqs_splits[0][:f].reshape(f, 1, 1, -1, 2)
freqs_f = mx.broadcast_to(freqs_f, (f, h, w, freqs_f.shape[-2], 2))
freqs_h = freqs_splits[1][:h].reshape(1, h, 1, -1, 2)
freqs_h = mx.broadcast_to(freqs_h, (f, h, w, freqs_h.shape[-2], 2))
freqs_w = freqs_splits[2][:w].reshape(1, 1, w, -1, 2)
freqs_w = mx.broadcast_to(freqs_w, (f, h, w, freqs_w.shape[-2], 2))
# Concatenate and reshape frequencies
freqs_i = mx.concatenate([freqs_f, freqs_h, freqs_w], axis=-2)
freqs_i = freqs_i.reshape(seq_len, 1, -1, 2)
# Apply rotary embedding
x_real = x_i[..., 0]
x_imag = x_i[..., 1]
freqs_cos = freqs_i[..., 0]
freqs_sin = freqs_i[..., 1]
x_rotated_real = x_real * freqs_cos - x_imag * freqs_sin
x_rotated_imag = x_real * freqs_sin + x_imag * freqs_cos
x_i = mx.stack([x_rotated_real, x_rotated_imag], axis=-1).reshape(seq_len, n, -1)
# Concatenate with remaining sequence if any
if seq_len < x.shape[1]:
x_i = mx.concatenate([x_i, x[i, seq_len:]], axis=0)
output.append(x_i)
return mx.stack(output).astype(x.dtype)
class WanRMSNorm(nn.Module):
"""Root Mean Square Layer Normalization."""
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = mx.ones((dim,))
def __call__(self, x: mx.array) -> mx.array:
# RMS normalization
variance = mx.mean(mx.square(x.astype(mx.float32)), axis=-1, keepdims=True)
x_normed = x * mx.rsqrt(variance + self.eps)
return (x_normed * self.weight).astype(x.dtype)
class WanLayerNorm(nn.Module):
"""Layer normalization."""
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine: bool = False):
super().__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if elementwise_affine:
self.weight = mx.ones((dim,))
self.bias = mx.zeros((dim,))
def __call__(self, x: mx.array) -> mx.array:
# Standard layer normalization
x_float = x.astype(mx.float32)
mean = mx.mean(x_float, axis=-1, keepdims=True)
variance = mx.var(x_float, axis=-1, keepdims=True)
x_normed = (x_float - mean) * mx.rsqrt(variance + self.eps)
if self.elementwise_affine:
x_normed = x_normed * self.weight + self.bias
return x_normed.astype(x.dtype)
def mlx_attention(
q: mx.array,
k: mx.array,
v: mx.array,
q_lens: Optional[mx.array] = None,
k_lens: Optional[mx.array] = None,
dropout_p: float = 0.,
softmax_scale: Optional[float] = None,
q_scale: Optional[float] = None,
causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
deterministic: bool = False,
dtype: Optional[type] = None,
) -> mx.array:
"""
MLX implementation of scaled dot-product attention.
"""
# Get shapes
b, lq, n, d = q.shape
_, lk, _, _ = k.shape
# Scale queries if needed
if q_scale is not None:
q = q * q_scale
# Compute attention scores
q = q.transpose(0, 2, 1, 3) # [b, n, lq, d]
k = k.transpose(0, 2, 1, 3) # [b, n, lk, d]
v = v.transpose(0, 2, 1, 3) # [b, n, lk, d]
# Compute attention scores
scores = mx.matmul(q, k.transpose(0, 1, 3, 2)) # [b, n, lq, lk]
# Apply softmax scale if provided
if softmax_scale is not None:
scores = scores * softmax_scale
else:
# Default scaling by sqrt(d)
scores = scores / mx.sqrt(mx.array(d, dtype=scores.dtype))
# Create attention mask
attn_mask = None
# Apply window size masking if specified
if window_size != (-1, -1):
left_window, right_window = window_size
window_mask = mx.zeros((lq, lk))
for i in range(lq):
start = max(0, i - left_window)
end = min(lk, i + right_window + 1)
window_mask[i, start:end] = 1
attn_mask = window_mask
# Apply causal masking if needed
if causal:
causal_mask = mx.tril(mx.ones((lq, lk)), k=0)
if attn_mask is None:
attn_mask = causal_mask
else:
attn_mask = mx.logical_and(attn_mask, causal_mask)
# Apply attention mask if present
if attn_mask is not None:
attn_mask = attn_mask.astype(scores.dtype)
scores = scores * attn_mask + (1 - attn_mask) * -1e4
# Apply attention mask if lengths are provided
if q_lens is not None or k_lens is not None:
if q_lens is not None:
mask = mx.arange(lq)[None, :] < q_lens[:, None]
mask = mask.astype(scores.dtype)
scores = scores * mask[:, None, :, None] + (1 - mask[:, None, :, None]) * -1e4
if k_lens is not None:
mask = mx.arange(lk)[None, :] < k_lens[:, None]
mask = mask.astype(scores.dtype)
scores = scores * mask[:, None, None, :] + (1 - mask[:, None, None, :]) * -1e4
# Apply softmax
max_scores = mx.max(scores, axis=-1, keepdims=True)
scores = scores - max_scores
exp_scores = mx.exp(scores)
sum_exp = mx.sum(exp_scores, axis=-1, keepdims=True)
attn = exp_scores / (sum_exp + 1e-6)
# Apply dropout if needed
if dropout_p > 0 and not deterministic:
raise NotImplementedError("Dropout not implemented in MLX version")
# Compute output
out = mx.matmul(attn, v) # [b, n, lq, d]
out = out.transpose(0, 2, 1, 3) # [b, lq, n, d]
return out
class WanSelfAttention(nn.Module):
"""Self-attention module with RoPE and optional QK normalization."""
def __init__(self, dim: int, num_heads: int, window_size: Tuple[int, int] = (-1, -1),
qk_norm: bool = True, eps: float = 1e-6):
super().__init__()
assert dim % num_heads == 0
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# Linear projections
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
# Normalization layers
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def __call__(self, x: mx.array, seq_lens: mx.array, grid_sizes: mx.array,
freqs: mx.array) -> mx.array:
b, s = x.shape[0], x.shape[1]
# Compute Q, K, V
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.qk_norm:
q = self.norm_q(q)
k = self.norm_k(k)
# Reshape for multi-head attention
q = q.reshape(b, s, self.num_heads, self.head_dim)
k = k.reshape(b, s, self.num_heads, self.head_dim)
v = v.reshape(b, s, self.num_heads, self.head_dim)
# Apply RoPE
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
# Apply attention
x = mlx_attention(q, k, v, k_lens=seq_lens, window_size=self.window_size)
# Reshape and project output
x = x.reshape(b, s, self.dim)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
"""Text-to-video cross attention."""
def __call__(self, x: mx.array, context: mx.array, context_lens: mx.array) -> mx.array:
b = x.shape[0]
# Compute queries from x
q = self.q(x)
if self.qk_norm:
q = self.norm_q(q)
q = q.reshape(b, -1, self.num_heads, self.head_dim)
# Compute keys and values from context
k = self.k(context)
v = self.v(context)
if self.qk_norm:
k = self.norm_k(k)
k = k.reshape(b, -1, self.num_heads, self.head_dim)
v = v.reshape(b, -1, self.num_heads, self.head_dim)
# Apply attention
x = mlx_attention(q, k, v, k_lens=context_lens)
# Reshape and project output
x = x.reshape(b, -1, self.dim)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
"""Image-to-video cross attention."""
def __init__(self, dim: int, num_heads: int, window_size: Tuple[int, int] = (-1, -1),
qk_norm: bool = True, eps: float = 1e-6):
super().__init__(dim, num_heads, window_size, qk_norm, eps)
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def __call__(self, x: mx.array, context: mx.array, context_lens: mx.array) -> mx.array:
# Split context into image and text parts
context_img = context[:, :257]
context = context[:, 257:]
b = x.shape[0]
# Compute queries
q = self.q(x)
if self.qk_norm:
q = self.norm_q(q)
q = q.reshape(b, -1, self.num_heads, self.head_dim)
# Compute keys and values for text
k = self.k(context)
v = self.v(context)
if self.qk_norm:
k = self.norm_k(k)
k = k.reshape(b, -1, self.num_heads, self.head_dim)
v = v.reshape(b, -1, self.num_heads, self.head_dim)
# Compute keys and values for image
k_img = self.k_img(context_img)
v_img = self.v_img(context_img)
if self.qk_norm:
k_img = self.norm_k_img(k_img)
k_img = k_img.reshape(b, -1, self.num_heads, self.head_dim)
v_img = v_img.reshape(b, -1, self.num_heads, self.head_dim)
# Apply attention
img_x = mlx_attention(q, k_img, v_img, k_lens=None)
x = mlx_attention(q, k, v, k_lens=context_lens)
# Combine and project
img_x = img_x.reshape(b, -1, self.dim)
x = x.reshape(b, -1, self.dim)
x = x + img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
"""Transformer block with self-attention, cross-attention, and FFN."""
def __init__(self, cross_attn_type: str, dim: int, ffn_dim: int, num_heads: int,
window_size: Tuple[int, int] = (-1, -1), qk_norm: bool = True,
cross_attn_norm: bool = False, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# Layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps)
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](
dim, num_heads, (-1, -1), qk_norm, eps)
self.norm2 = WanLayerNorm(dim, eps)
# FFN - use a list instead of Sequential to match PyTorch exactly!
self.ffn = [
nn.Linear(dim, ffn_dim),
nn.GELU(),
nn.Linear(ffn_dim, dim)
]
# Modulation parameters
self.modulation = mx.random.normal((1, 6, dim)) / math.sqrt(dim)
def __call__(self, x: mx.array, e: mx.array, seq_lens: mx.array,
grid_sizes: mx.array, freqs: mx.array, context: mx.array,
context_lens: Optional[mx.array]) -> mx.array:
# Apply modulation
e = (self.modulation + e).astype(mx.float32)
e_chunks = [mx.squeeze(chunk, axis=1) for chunk in mx.split(e, 6, axis=1)]
# Self-attention with modulation
y = self.norm1(x).astype(mx.float32)
y = y * (1 + e_chunks[1]) + e_chunks[0]
y = self.self_attn(y, seq_lens, grid_sizes, freqs)
x = x + y * e_chunks[2]
# Cross-attention
if self.cross_attn_norm and isinstance(self.norm3, WanLayerNorm):
x = x + self.cross_attn(self.norm3(x), context, context_lens)
else:
x = x + self.cross_attn(x, context, context_lens)
# FFN with modulation
y = self.norm2(x).astype(mx.float32)
y = y * (1 + e_chunks[4]) + e_chunks[3]
# Apply FFN layers manually
y = self.ffn[0](y) # Linear
y = self.ffn[1](y) # GELU
y = self.ffn[2](y) # Linear
x = x + y * e_chunks[5]
return x
class Head(nn.Module):
"""Output head for final projection."""
def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int],
eps: float = 1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# Output projection
out_features = int(np.prod(patch_size)) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_features)
# Modulation
self.modulation = mx.random.normal((1, 2, dim)) / math.sqrt(dim)
def __call__(self, x: mx.array, e: mx.array) -> mx.array:
# Apply modulation
e = (self.modulation + mx.expand_dims(e, 1)).astype(mx.float32)
e_chunks = mx.split(e, 2, axis=1)
# Apply normalization and projection with modulation
x = self.norm(x) * (1 + e_chunks[1]) + e_chunks[0]
x = self.head(x)
return x
class MLPProj(nn.Module):
"""MLP projection for image embeddings."""
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
# Use a list to match PyTorch Sequential indexing
self.proj = [
nn.LayerNorm(in_dim),
nn.Linear(in_dim, in_dim),
nn.GELU(),
nn.Linear(in_dim, out_dim),
nn.LayerNorm(out_dim)
]
def __call__(self, image_embeds: mx.array) -> mx.array:
x = image_embeds
for layer in self.proj:
x = layer(x)
return x
class WanModel(nn.Module):
"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
MLX implementation - True 1:1 port from PyTorch.
"""
def __init__(
self,
model_type: str = 't2v',
patch_size: Tuple[int, int, int] = (1, 2, 2),
text_len: int = 512,
in_dim: int = 16,
dim: int = 2048,
ffn_dim: int = 8192,
freq_dim: int = 256,
text_dim: int = 4096,
out_dim: int = 16,
num_heads: int = 16,
num_layers: int = 32,
window_size: Tuple[int, int] = (-1, -1),
qk_norm: bool = True,
cross_attn_norm: bool = True,
eps: float = 1e-6
):
super().__init__()
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
# Store configuration
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# Embeddings
self.patch_embedding = nn.Conv3d(
in_dim, dim,
kernel_size=patch_size,
stride=patch_size
)
# Use lists instead of Sequential to match PyTorch!
self.text_embedding = [
nn.Linear(text_dim, dim),
nn.GELU(),
nn.Linear(dim, dim)
]
self.time_embedding = [
nn.Linear(freq_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim)
]
self.time_projection = [
nn.SiLU(),
nn.Linear(dim, dim * 6)
]
# Transformer blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = [
WanAttentionBlock(
cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps
)
for _ in range(num_layers)
]
# Output head
self.head = Head(dim, out_dim, patch_size, eps)
# Precompute RoPE frequencies
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = mx.concatenate([
rope_params(1024, d - 4 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
rope_params(1024, 2 * (d // 6))
], axis=1)
# Image embedding for i2v
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim)
# Initialize weights
self.init_weights()
def __call__(
self,
x: List[mx.array],
t: mx.array,
context: List[mx.array],
seq_len: int,
clip_fea: Optional[mx.array] = None,
y: Optional[List[mx.array]] = None
) -> List[mx.array]:
"""
Forward pass through the diffusion model.
Args:
x: List of input video tensors [C_in, F, H, W]
t: Diffusion timesteps [B]
context: List of text embeddings [L, C]
seq_len: Maximum sequence length
clip_fea: CLIP image features for i2v mode
y: Conditional video inputs for i2v mode
Returns:
List of denoised video tensors [C_out, F, H/8, W/8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# Concatenate conditional inputs if provided
if y is not None:
x = [mx.concatenate([u, v], axis=0) for u, v in zip(x, y)]
# Patch embedding
x = [mx.transpose(mx.expand_dims(u, 0), (0, 2, 3, 4, 1)) for u in x]
x = [self.patch_embedding(u) for u in x]
# Transpose back from MLX format (N, D, H, W, C) to (N, C, D, H, W) for the rest of the model
x = [mx.transpose(u, (0, 4, 1, 2, 3)) for u in x]
grid_sizes = mx.array([[u.shape[2], u.shape[3], u.shape[4]] for u in x])
# Flatten spatial dimensions
x = [mx.transpose(u.reshape(u.shape[0], u.shape[1], -1), (0, 2, 1)) for u in x]
seq_lens = mx.array([u.shape[1] for u in x])
# Pad sequences to max length
x_padded = []
for u in x:
if u.shape[1] < seq_len:
padding = mx.zeros((1, seq_len - u.shape[1], u.shape[2]))
u = mx.concatenate([u, padding], axis=1)
x_padded.append(u)
x = mx.concatenate(x_padded, axis=0)
# Time embeddings - apply layers manually
e = sinusoidal_embedding_1d(self.freq_dim, t).astype(mx.float32)
e = self.time_embedding[0](e) # Linear
e = self.time_embedding[1](e) # SiLU
e = self.time_embedding[2](e) # Linear
# Time projection
e = self.time_projection[0](e) # SiLU
e0 = self.time_projection[1](e).reshape(-1, 6, self.dim) # Linear
# Process context
context_lens = None
context_padded = []
for u in context:
if u.shape[0] < self.text_len:
padding = mx.zeros((self.text_len - u.shape[0], u.shape[1]))
u = mx.concatenate([u, padding], axis=0)
context_padded.append(u)
context = mx.stack(context_padded)
# Apply text embedding layers manually
context = self.text_embedding[0](context) # Linear
context = self.text_embedding[1](context) # GELU
context = self.text_embedding[2](context) # Linear
# Add image embeddings for i2v
if clip_fea is not None:
context_clip = self.img_emb(clip_fea)
context = mx.concatenate([context_clip, context], axis=1)
# Apply transformer blocks
for block in self.blocks:
x = block(
x, e0, seq_lens, grid_sizes, self.freqs,
context, context_lens
)
# Apply output head
x = self.head(x, e)
# Unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.astype(mx.float32) for u in x]
def unpatchify(self, x: mx.array, grid_sizes: mx.array) -> List[mx.array]:
"""Reconstruct video tensors from patch embeddings."""
c = self.out_dim
out = []
for i in range(grid_sizes.shape[0]):
f, h, w = int(grid_sizes[i, 0]), int(grid_sizes[i, 1]), int(grid_sizes[i, 2])
seq_len = f * h * w
# Extract relevant sequence
u = x[i, :seq_len]
# Reshape to grid with patches
pf, ph, pw = self.patch_size
u = u.reshape(f, h, w, pf, ph, pw, c)
# Rearrange dimensions
u = mx.transpose(u, (6, 0, 3, 1, 4, 2, 5))
# Combine patches
u = u.reshape(c, f * pf, h * ph, w * pw)
out.append(u)
return out
def init_weights(self):
"""Initialize model parameters using Xavier/He initialization."""
# Note: MLX doesn't have nn.init like PyTorch, so we manually initialize
# Helper function for Xavier uniform initialization
def xavier_uniform(shape):
bound = mx.sqrt(6.0 / (shape[0] + shape[1]))
return mx.random.uniform(low=-bound, high=bound, shape=shape)
# Initialize linear layers in blocks
for block in self.blocks:
# Self attention
block.self_attn.q.weight = xavier_uniform(block.self_attn.q.weight.shape)
block.self_attn.k.weight = xavier_uniform(block.self_attn.k.weight.shape)
block.self_attn.v.weight = xavier_uniform(block.self_attn.v.weight.shape)
block.self_attn.o.weight = xavier_uniform(block.self_attn.o.weight.shape)
# Cross attention
block.cross_attn.q.weight = xavier_uniform(block.cross_attn.q.weight.shape)
block.cross_attn.k.weight = xavier_uniform(block.cross_attn.k.weight.shape)
block.cross_attn.v.weight = xavier_uniform(block.cross_attn.v.weight.shape)
block.cross_attn.o.weight = xavier_uniform(block.cross_attn.o.weight.shape)
# FFN layers - now it's a list!
block.ffn[0].weight = xavier_uniform(block.ffn[0].weight.shape)
block.ffn[2].weight = xavier_uniform(block.ffn[2].weight.shape)
# Modulation
block.modulation = mx.random.normal(
shape=(1, 6, self.dim),
scale=1.0 / math.sqrt(self.dim)
)
# Special initialization for embeddings
# Patch embedding - Xavier uniform
weight_shape = self.patch_embedding.weight.shape
fan_in = weight_shape[1] * np.prod(self.patch_size)
fan_out = weight_shape[0]
bound = mx.sqrt(6.0 / (fan_in + fan_out))
self.patch_embedding.weight = mx.random.uniform(
low=-bound,
high=bound,
shape=weight_shape
)
# Text embedding - normal distribution with std=0.02
self.text_embedding[0].weight = mx.random.normal(shape=self.text_embedding[0].weight.shape, scale=0.02)
self.text_embedding[2].weight = mx.random.normal(shape=self.text_embedding[2].weight.shape, scale=0.02)
# Time embedding - normal distribution with std=0.02
self.time_embedding[0].weight = mx.random.normal(shape=self.time_embedding[0].weight.shape, scale=0.02)
self.time_embedding[2].weight = mx.random.normal(shape=self.time_embedding[2].weight.shape, scale=0.02)
# Output head - initialize to zeros
self.head.head.weight = mx.zeros(self.head.head.weight.shape)
# Head modulation
self.head.modulation = mx.random.normal(
shape=(1, 2, self.dim),
scale=1.0 / math.sqrt(self.dim)
)
# Initialize i2v specific layers if present
if self.model_type == 'i2v':
for i in [1, 3]: # Linear layers in the proj list
if isinstance(self.img_emb.proj[i], nn.Linear):
self.img_emb.proj[i].weight = xavier_uniform(self.img_emb.proj[i].weight.shape)