2024-03-20 07:45:46 +08:00
|
|
|
import json
|
|
|
|
from pathlib import Path
|
2025-01-14 02:01:18 +08:00
|
|
|
from typing import Dict, List, Optional
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
|
|
|
2025-02-03 16:13:17 +08:00
|
|
|
class GRPODataset:
|
|
|
|
"""
|
|
|
|
Dataset wrapper for GRPO training data.
|
|
|
|
Each example should have a 'prompt' and 'answer' field.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data: List[Dict[str, str]],
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
prompt_key: str = "prompt",
|
|
|
|
answer_key: str = "answer"
|
|
|
|
):
|
|
|
|
self._data = []
|
|
|
|
|
|
|
|
for item in data:
|
|
|
|
# Tokenize prompt and answer
|
|
|
|
prompt_tokens = tokenizer.encode(item[prompt_key])
|
|
|
|
answer_tokens = tokenizer.encode(item[answer_key])
|
|
|
|
|
|
|
|
# Add EOS tokens if needed
|
|
|
|
if prompt_tokens[-1] != tokenizer.eos_token_id:
|
|
|
|
prompt_tokens.append(tokenizer.eos_token_id)
|
|
|
|
if answer_tokens[-1] != tokenizer.eos_token_id:
|
|
|
|
answer_tokens.append(tokenizer.eos_token_id)
|
|
|
|
|
|
|
|
self._data.append({
|
|
|
|
'prompt': prompt_tokens,
|
|
|
|
'answer': answer_tokens
|
|
|
|
})
|
|
|
|
|
|
|
|
def __getitem__(self, idx: int) -> Dict[str, List[int]]:
|
|
|
|
return self._data[idx]
|
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return len(self._data)
|
|
|
|
|
|
|
|
|
2024-03-20 07:45:46 +08:00
|
|
|
class Dataset:
|
|
|
|
"""
|
2024-06-27 01:20:50 +08:00
|
|
|
Light-weight wrapper to hold a dataset.
|
2024-03-20 07:45:46 +08:00
|
|
|
"""
|
|
|
|
|
2025-01-04 02:50:59 +08:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data: List[Dict[str, str]],
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
text_key: str = "text",
|
|
|
|
):
|
|
|
|
self._data = [tokenizer.encode(d[text_key]) for d in data]
|
|
|
|
for d in self._data:
|
|
|
|
if d[-1] != tokenizer.eos_token_id:
|
|
|
|
d.append(tokenizer.eos_token_id)
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
def __getitem__(self, idx: int):
|
2025-01-04 02:50:59 +08:00
|
|
|
return self._data[idx]
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._data)
|
|
|
|
|
|
|
|
|
2025-01-04 02:50:59 +08:00
|
|
|
class ChatDataset:
|
2024-03-20 07:45:46 +08:00
|
|
|
"""
|
|
|
|
A dataset for chat data in the format of {"messages": [...]}
|
|
|
|
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
|
|
|
"""
|
|
|
|
|
2024-06-27 01:20:50 +08:00
|
|
|
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer):
|
2025-01-04 02:50:59 +08:00
|
|
|
self._data = [
|
|
|
|
tokenizer.apply_chat_template(
|
|
|
|
d["messages"],
|
|
|
|
tools=d.get("tools", None),
|
|
|
|
)
|
|
|
|
for d in data
|
|
|
|
]
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
def __getitem__(self, idx: int):
|
2025-01-04 02:50:59 +08:00
|
|
|
return self._data[idx]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._data)
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
|
2025-01-04 02:50:59 +08:00
|
|
|
class CompletionsDataset:
|
2024-03-20 07:45:46 +08:00
|
|
|
"""
|
|
|
|
A dataset for prompt-completion data in the format of {"prompt": ..., "completion": ...}
|
2024-06-27 01:20:50 +08:00
|
|
|
or using user-provided keys for prompt and completion values
|
2024-03-20 07:45:46 +08:00
|
|
|
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
|
|
|
"""
|
|
|
|
|
2024-06-27 01:20:50 +08:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data: List[Dict[str, str]],
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
2025-01-14 02:01:18 +08:00
|
|
|
prompt_key: str,
|
|
|
|
completion_key: str,
|
2024-06-27 01:20:50 +08:00
|
|
|
):
|
2025-01-04 02:50:59 +08:00
|
|
|
self._data = [
|
|
|
|
tokenizer.apply_chat_template(
|
|
|
|
[
|
|
|
|
{"role": "user", "content": d[prompt_key]},
|
|
|
|
{"role": "assistant", "content": d[completion_key]},
|
|
|
|
],
|
|
|
|
)
|
|
|
|
for d in data
|
|
|
|
]
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
def __getitem__(self, idx: int):
|
2025-01-04 02:50:59 +08:00
|
|
|
return self._data[idx]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._data)
|
2024-03-20 07:45:46 +08:00
|
|
|
|
|
|
|
|
2025-01-14 02:01:18 +08:00
|
|
|
def create_dataset(
|
|
|
|
data,
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
prompt_feature: Optional[str] = None,
|
|
|
|
completion_feature: Optional[str] = None,
|
|
|
|
):
|
|
|
|
prompt_feature = prompt_feature or "prompt"
|
|
|
|
completion_feature = completion_feature or "completion"
|
2024-09-30 22:36:21 +08:00
|
|
|
sample = data[0]
|
|
|
|
if "messages" in sample:
|
2024-06-27 01:20:50 +08:00
|
|
|
return ChatDataset(data, tokenizer)
|
2025-01-14 02:01:18 +08:00
|
|
|
elif prompt_feature in sample and completion_feature in sample:
|
|
|
|
return CompletionsDataset(data, tokenizer, prompt_feature, completion_feature)
|
2024-09-30 22:36:21 +08:00
|
|
|
elif "text" in sample:
|
2025-01-04 02:50:59 +08:00
|
|
|
return Dataset(data, tokenizer)
|
2024-03-20 07:45:46 +08:00
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"Unsupported data format, check the supported formats here:\n"
|
|
|
|
"https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2025-01-14 02:01:18 +08:00
|
|
|
def load_local_dataset(
|
|
|
|
data_path: Path,
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
prompt_feature: Optional[str] = None,
|
|
|
|
completion_feature: Optional[str] = None,
|
|
|
|
):
|
2024-09-30 22:36:21 +08:00
|
|
|
def load_subset(path):
|
|
|
|
if not path.exists():
|
|
|
|
return []
|
|
|
|
with open(path, "r") as fid:
|
|
|
|
data = [json.loads(l) for l in fid]
|
2025-01-14 02:01:18 +08:00
|
|
|
return create_dataset(data, tokenizer, prompt_feature, completion_feature)
|
2024-09-30 22:36:21 +08:00
|
|
|
|
|
|
|
names = ("train", "valid", "test")
|
|
|
|
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
|
|
|
return train, valid, test
|
|
|
|
|
|
|
|
|
2025-01-14 02:01:18 +08:00
|
|
|
def load_hf_dataset(
|
|
|
|
data_id: str,
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
prompt_feature: Optional[str] = None,
|
|
|
|
completion_feature: Optional[str] = None,
|
|
|
|
):
|
2024-09-30 22:36:21 +08:00
|
|
|
from datasets import exceptions, load_dataset
|
|
|
|
|
|
|
|
try:
|
|
|
|
dataset = load_dataset(data_id)
|
2024-06-27 01:20:50 +08:00
|
|
|
|
|
|
|
names = ("train", "valid", "test")
|
|
|
|
|
|
|
|
train, valid, test = [
|
2025-01-14 02:01:18 +08:00
|
|
|
(
|
|
|
|
create_dataset(
|
|
|
|
dataset[n], tokenizer, prompt_feature, completion_feature
|
|
|
|
)
|
|
|
|
if n in dataset.keys()
|
|
|
|
else []
|
|
|
|
)
|
2024-09-30 22:36:21 +08:00
|
|
|
for n in names
|
2024-06-27 01:20:50 +08:00
|
|
|
]
|
2024-09-30 22:36:21 +08:00
|
|
|
|
|
|
|
except exceptions.DatasetNotFoundError:
|
|
|
|
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
|
|
|
|
|
|
|
|
return train, valid, test
|
|
|
|
|
|
|
|
|
|
|
|
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
|
|
|
import datasets
|
|
|
|
|
|
|
|
hf_args = args.hf_dataset
|
|
|
|
dataset_name = hf_args["name"]
|
|
|
|
print(f"Loading Hugging Face dataset {dataset_name}.")
|
|
|
|
text_feature = hf_args.get("text_feature")
|
|
|
|
prompt_feature = hf_args.get("prompt_feature")
|
|
|
|
completion_feature = hf_args.get("completion_feature")
|
|
|
|
|
|
|
|
def create_hf_dataset(split: str = None):
|
|
|
|
ds = datasets.load_dataset(
|
|
|
|
dataset_name,
|
|
|
|
split=split,
|
|
|
|
**hf_args.get("config", {}),
|
|
|
|
)
|
|
|
|
if prompt_feature and completion_feature:
|
|
|
|
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
|
|
|
elif text_feature:
|
2025-01-22 06:12:43 +08:00
|
|
|
return Dataset(ds, tokenizer, text_key=text_feature)
|
2024-09-30 22:36:21 +08:00
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"Specify either a prompt and completion feature or a text "
|
|
|
|
"feature for the Hugging Face dataset."
|
|
|
|
)
|
|
|
|
|
|
|
|
if args.train:
|
|
|
|
train_split = hf_args.get("train_split", "train[:80%]")
|
|
|
|
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
|
|
|
train = create_hf_dataset(split=train_split)
|
|
|
|
valid = create_hf_dataset(split=valid_split)
|
|
|
|
else:
|
|
|
|
train, valid = [], []
|
|
|
|
if args.test:
|
|
|
|
test = create_hf_dataset(split=hf_args.get("test_split"))
|
|
|
|
else:
|
|
|
|
test = []
|
|
|
|
|
|
|
|
return train, valid, test
|
|
|
|
|
|
|
|
|
|
|
|
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
2025-01-04 02:50:59 +08:00
|
|
|
if getattr(args, "hf_dataset", False):
|
2024-09-30 22:36:21 +08:00
|
|
|
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
|
|
|
else:
|
|
|
|
data_path = Path(args.data)
|
2025-01-14 02:01:18 +08:00
|
|
|
|
|
|
|
prompt_feature = getattr(args, "prompt_feature", None)
|
|
|
|
completion_feature = getattr(args, "completion_feature", None)
|
2024-09-30 22:36:21 +08:00
|
|
|
if data_path.exists():
|
2025-01-14 02:01:18 +08:00
|
|
|
train, valid, test = load_local_dataset(
|
|
|
|
data_path, tokenizer, prompt_feature, completion_feature
|
|
|
|
)
|
2024-09-30 22:36:21 +08:00
|
|
|
else:
|
|
|
|
print(f"Loading Hugging Face dataset {args.data}.")
|
2025-01-14 02:01:18 +08:00
|
|
|
train, valid, test = load_hf_dataset(
|
|
|
|
args.data, tokenizer, prompt_feature, completion_feature
|
|
|
|
)
|
2024-09-30 22:36:21 +08:00
|
|
|
|
2024-03-20 07:45:46 +08:00
|
|
|
if args.train and len(train) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Training set not found or empty. Must provide training set for fine-tuning."
|
|
|
|
)
|
|
|
|
if args.train and len(valid) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Validation set not found or empty. Must provide validation set for fine-tuning."
|
|
|
|
)
|
|
|
|
if args.test and len(test) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Test set not found or empty. Must provide test set for evaluation."
|
|
|
|
)
|
|
|
|
return train, valid, test
|