mlx-examples/phi2/model.py

233 lines
7.6 KiB
Python
Raw Normal View History

2023-12-14 11:22:56 +08:00
from typing import Optional
from dataclasses import dataclass
from mlx.utils import tree_unflatten, tree_map
from transformers import AutoTokenizer
import mlx.core as mx
import mlx.nn as nn
import math
@dataclass
class ModelArgs:
max_sequence_length: int = 2048
num_vocab: int = 51200
model_dim: int = 2560
num_heads: int = 32
num_layers: int = 32
rotary_dim: int = 32
class NewGELUActivation(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def __call__(self, input: mx.array) -> mx.array:
return (
0.5
* input
* (
1.0
+ mx.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * (input**3)))
)
)
class RoPEAttention(nn.Module):
def __init__(self, dims: int, num_heads: int, bias: bool = True):
super().__init__()
self.num_heads = num_heads
self.rope = nn.RoPE(dims // num_heads, traditional=True)
self.query_proj = nn.Linear(dims, dims, bias=bias)
self.key_proj = nn.Linear(dims, dims, bias=bias)
self.value_proj = nn.Linear(dims, dims, bias=bias)
self.out_proj = nn.Linear(dims, dims, bias=bias)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
# Extract some shapes
num_heads = self.num_heads
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
# Note that we return the keys and values to possibly be used as a cache
return self.out_proj(values_hat), (keys, values)
class ParallelBlock(nn.Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.self_attention = RoPEAttention(dims, num_heads, bias=True)
self.ln = nn.LayerNorm(dims)
self.fc1 = nn.Linear(dims, mlp_dims)
self.fc2 = nn.Linear(mlp_dims, dims)
self.act = NewGELUActivation()
def __call__(self, x, x_mask):
residual = x
hidden_states = self.ln(x)
attn_outputs, _ = self.self_attention(
hidden_states, hidden_states, hidden_states, x_mask
)
ff_hidden_states = self.fc2(self.act(self.fc1(hidden_states)))
hidden_states = attn_outputs + ff_hidden_states + residual
return hidden_states
class TransformerDecoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.h = [ParallelBlock(dims, num_heads, mlp_dims) for i in range(num_layers)]
def __call__(self, x, x_mask):
for layer in self.h:
x = layer(x, x_mask)
return x
class Phi2(nn.Module):
def __init__(self, config: ModelArgs):
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
self.transformer = TransformerDecoder(
num_layers=config.num_layers,
dims=config.model_dim,
num_heads=config.num_heads,
)
self.lm_head = LanguageModelingHead(config)
def __call__(
self,
input_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.wte(input_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
else:
attention_mask = nn.MultiHeadAttention.create_additive_causal_mask(
x.shape[1]
)
y = self.transformer(x, attention_mask)
return self.lm_head(y)
def generate(self, input_ids, temp=1.0):
cache = input_ids.tolist()
# Make an additive causal mask. We will need that to process the prompt.
mask = nn.MultiHeadAttention.create_additive_causal_mask(input_ids.shape[1])
mask = mask.astype(self.wte.weight.dtype)
# First we process the prompt x the same way as in __call__ but
# save the caches in cache
x = self.wte(input_ids)
# for l in self.layers:
# x, c = l(x, mask=mask)
# cache.append(c) # <--- we store the per layer cache in a
# simple python list
x = self.transformer(x, mask)
y = self.lm_head(x[:, -1]) # <--- we only care about the last logits
# that generate the next token
y = mx.random.categorical(y * (1 / temp))
# y now has size [1]
# Since MLX is lazily evaluated nothing is computed yet.
# Calling y.item() would force the computation to happen at
# this point but we can also choose not to do that and let the
# user choose when to start the computation.
yield y
cache += [y.item()]
# Now we parsed the prompt and generated the first token we
# need to feed it back into the model and loop to generate the
# rest.
while True:
# Unsqueezing the last dimension to add a sequence length
# dimension of 1
x = self.wte(mx.array(cache))
x = self.transformer(x, mask)
y = self.lm_head(x[:, -1])
y = mx.random.categorical(y * (1 / temp))
cache += [y[0].item()]
yield y
class LanguageModelingHead(nn.Module):
def __init__(self, config: ModelArgs) -> None:
self.ln = nn.LayerNorm(config.model_dim)
self.linear = nn.Linear(config.model_dim, config.num_vocab)
def __call__(self, inputs):
return self.linear(self.ln(inputs))
if __name__ == "__main__":
model = Phi2(ModelArgs())
weights = mx.load("weights/phi-2.npz")
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: mx.array(p), weights)
model.update(weights)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
tokens = tokenizer(
'''def print_prime(n):
"""
Print all primes between 1 and n
"""''',
return_tensors="np",
return_attention_mask=False,
)
tokens = {key: mx.array(v) for key, v in tokens.items()}
print(
'''def print_prime(n):
"""
Print all primes between 1 and n
"""'''
)
for output in model.generate(**tokens):
print(tokenizer.decode(output.item()))