mlx-examples/llms/mlx_lm/models/mamba2.py

313 lines
11 KiB
Python
Raw Normal View History

2024-10-02 18:48:15 +08:00
import math
from dataclasses import dataclass, field
from typing import Tuple, Union
2024-10-20 22:11:39 +08:00
import mlx.core as mx
2024-10-21 00:04:34 +08:00
import mlx.nn as nn
2024-10-20 22:11:39 +08:00
2024-10-02 18:48:15 +08:00
from .base import BaseModelArgs
from .cache import MambaCache
2024-10-02 18:48:15 +08:00
@dataclass
class ModelArgs(BaseModelArgs):
num_heads: int
head_dim: int
vocab_size: int
hidden_size: int
state_size: int
num_hidden_layers: int
layer_norm_epsilon: float
expand: int
conv_kernel: int
n_groups: int
use_bias: bool
use_conv_bias: bool
2024-10-21 00:04:34 +08:00
initializer_range: float
residual_in_fp32: bool
time_step_min: float
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
intermediate_size: int = None
2024-11-06 23:35:46 +08:00
use_cache: bool = True
2024-10-02 18:48:15 +08:00
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
2024-10-02 18:48:15 +08:00
def __post_init__(self):
2024-11-06 23:35:46 +08:00
if not hasattr(self, "intermediate_size"):
self.intermediate_size = int(self.expand * self.hidden_size)
2024-10-02 18:48:15 +08:00
if not hasattr(self, "head_dim"):
self.head_dim = self.hidden_size // self.num_heads
if self.time_step_rank == "auto":
self.time_step_rank = math.ceil(self.hidden_size / 16)
2024-10-24 22:16:42 +08:00
2024-10-31 04:23:13 +08:00
class MambaRMSNormGated(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
2024-11-06 23:35:46 +08:00
self.weight = mx.ones((hidden_size,))
2024-10-31 04:23:13 +08:00
self.variance_epsilon = eps
2024-11-06 23:35:46 +08:00
def __call__(self, hidden_states, gate=None):
2024-10-31 04:23:13 +08:00
if gate is not None:
2024-11-06 23:35:46 +08:00
hidden_states = hidden_states * nn.silu(gate)
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
2024-12-11 01:15:12 +08:00
2024-11-06 23:35:46 +08:00
def silu(x):
return x * mx.sigmoid(x)
2024-12-11 01:15:12 +08:00
2024-11-06 23:35:46 +08:00
def ssd(x, A, B, C, chunk_size):
batch, seqlen, nheads, dim = x.shape
2024-12-11 01:18:59 +08:00
2024-11-06 23:35:46 +08:00
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
2024-11-06 23:35:46 +08:00
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
outputs = []
2024-11-06 23:35:46 +08:00
for i in range(0, seqlen, chunk_size):
chunk = slice(i, min(i + chunk_size, seqlen))
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
2024-12-11 01:20:13 +08:00
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
2024-11-06 23:35:46 +08:00
state = state * mx.expand_dims(dA, axis=-1) + dBx
2024-12-11 01:20:13 +08:00
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
2024-11-06 23:35:46 +08:00
outputs.append(y)
2024-11-06 23:35:46 +08:00
return mx.concatenate(outputs, axis=1), state
2024-12-11 01:15:12 +08:00
2024-11-06 23:35:46 +08:00
class DepthWiseConv1d(nn.Module):
2024-11-22 05:25:58 +08:00
def __init__(self, channels, kernel_size, bias=True, padding=0):
super().__init__()
2024-11-22 05:25:58 +08:00
self.channels = channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = mx.random.normal((channels, kernel_size, 1))
2024-11-22 05:25:58 +08:00
self.bias = mx.zeros((channels,)) if bias else None
2024-11-22 05:25:58 +08:00
def __call__(self, x, cache=None):
B, L, C = x.shape
_, K, _ = self.weight.shape
if cache is not None:
2024-11-22 05:25:58 +08:00
x = mx.concatenate([cache, x], axis=1)
else:
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
y = mx.conv_general(x, self.weight, groups=C)
y = y + self.bias
2024-11-22 05:25:58 +08:00
return y, x[:, -K + 1:, :]
2024-11-06 23:35:46 +08:00
class Mamba2Block(nn.Module):
2024-10-21 00:04:34 +08:00
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.args = args
2024-11-10 21:36:26 +08:00
# Calculate dimensions
self.d_model = args.hidden_size
self.d_state = args.state_size
self.d_conv = args.conv_kernel
self.expand = args.expand
if args.intermediate_size == None:
self.d_inner = int(self.expand * self.d_model)
else:
self.d_inner = args.intermediate_size
self.n_groups = args.n_groups
self.n_heads = args.num_heads
self.d_head = self.d_inner // self.n_heads
# Input projection
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
# Convolution
conv_dim = self.d_inner + 2 * self.n_groups * self.d_state
self.conv1d = DepthWiseConv1d(
2024-11-22 05:25:58 +08:00
channels=conv_dim,
kernel_size=self.d_conv,
2024-11-22 05:25:58 +08:00
bias=args.use_conv_bias
2024-10-21 00:04:34 +08:00
)
# SSM parameters
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
# Output projection
self.norm = MambaRMSNormGated(self.d_inner, eps=args.layer_norm_epsilon)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
2024-11-06 23:35:46 +08:00
if args.rescale_prenorm_residual:
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
self.out_proj.weight = self.out_proj.weight * layer_scale
def __call__(self, u: mx.array, cache=None):
batch_size, seq_len, _ = u.shape
# Project input
2024-12-11 01:20:13 +08:00
proj = self.in_proj(u) # [batch, seq_len, d_in_proj]
# Calculate split indices and slice tensors
z = proj[..., :self.d_inner]
2024-12-11 01:15:12 +08:00
x_conv = proj[..., self.d_inner:self.d_inner + (self.d_inner + 2 * self.n_groups * self.d_state)]
dt = proj[..., -self.n_heads:]
# Process time steps
dt = nn.softplus(dt + self.dt_bias)
dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max)
dt = mx.maximum(dt, self.args.time_step_floor)
# Convolution and activation
2024-11-22 05:25:58 +08:00
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
if cache is not None:
cache[0] = conv_state
x_conv = silu(x_conv)
# Split conv output
x = x_conv[..., :self.d_inner]
B = x_conv[..., self.d_inner:self.d_inner + self.d_state]
C = x_conv[..., -self.d_state:]
# Reshape x for SSM
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
2024-11-10 21:36:26 +08:00
# Process B and C without reshaping heads
B = mx.expand_dims(B, axis=2) # [batch, seq_len, 1, d_state]
B = mx.broadcast_to(B, (batch_size, seq_len, self.n_heads, self.d_state))
C = mx.expand_dims(C, axis=2) # [batch, seq_len, 1, d_state]
C = mx.broadcast_to(C, (batch_size, seq_len, self.n_heads, self.d_state))
# Initialize or get previous state
if cache and cache[1] is not None:
prev_state = cache[1]
else:
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
# Compute dA
dA = -mx.exp(self.A_log) # [n_heads]
2024-12-11 01:20:13 +08:00
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads)) # Ensure correct shape
dA = mx.exp(mx.expand_dims(dt * mx.expand_dims(dA, 0), -1)) # [batch, seq_len, n_heads, 1]
dA = mx.expand_dims(dA, -1) # [batch, seq_len, n_heads, 1, 1]
# Process sequence
next_state = prev_state
outputs = []
for t in range(seq_len):
# Get current step tensors
2024-12-11 01:20:13 +08:00
xt = x[:, t] # [batch, n_heads, d_head]
Bt = B[:, t] # [batch, n_heads, d_state]
Ct = C[:, t] # [batch, n_heads, d_state]
dAt = dA[:, t] # [batch, n_heads, 1, 1]
# Update state
next_state = (
2024-12-11 01:20:13 +08:00
next_state * dAt + # Broadcasting: [batch, n_heads, d_head, d_state] * [batch, n_heads, 1, 1]
mx.matmul(
2024-12-11 01:20:13 +08:00
mx.expand_dims(xt, -1), # [batch, n_heads, d_head, 1]
mx.expand_dims(Bt, -2) # [batch, n_heads, 1, d_state]
)
)
# Compute output
yt = mx.matmul(
2024-12-11 01:20:13 +08:00
next_state, # [batch, n_heads, d_head, d_state]
mx.expand_dims(Ct, -1) # [batch, n_heads, d_state, 1]
)
2024-12-11 01:20:13 +08:00
yt = mx.squeeze(yt, -1) # [batch, n_heads, d_head]
yt = yt + xt * mx.expand_dims(self.D, -1)
# Reshape and normalize
yt = mx.reshape(yt, (batch_size, 1, self.d_inner))
yt = self.norm(yt, z[:, t:t+1])
outputs.append(self.out_proj(yt))
# Update cache
if cache is not None:
cache[1] = next_state
return mx.concatenate(outputs, axis=1)
2024-10-02 18:48:15 +08:00
2024-10-21 00:04:34 +08:00
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.residual_in_fp32 = args.residual_in_fp32
self.mixer = Mamba2Block(args)
2024-10-12 02:53:29 +08:00
self.norm = nn.RMSNorm(args.hidden_size)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
if self.residual_in_fp32:
x = x.astype(mx.float32)
normed = self.norm(x)
output = self.mixer(normed, cache)
return output + x
2024-11-06 23:35:46 +08:00
class Mamba2(nn.Module):
2024-10-02 18:48:15 +08:00
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
2024-10-21 00:04:34 +08:00
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
2024-10-02 18:48:15 +08:00
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
2024-10-21 00:04:34 +08:00
x = self.embeddings(x)
2024-10-02 18:48:15 +08:00
if cache is None:
2024-10-21 00:04:34 +08:00
cache = [None] * len(self.layers)
hidden = x
2024-11-06 23:35:46 +08:00
for layer, c in zip(self.layers, cache):
hidden = layer(hidden, c)
return self.norm_f(hidden)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
2024-10-02 18:48:15 +08:00
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
2024-11-06 23:35:46 +08:00
self.model_type = args.model_type
self.backbone = Mamba2(args)
2024-10-02 18:48:15 +08:00
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
2024-11-06 23:35:46 +08:00
def __call__(self, inputs: mx.array, cache=None):
hidden = self.backbone(inputs, cache)
2024-10-02 18:48:15 +08:00
if self.args.tie_word_embeddings:
logits = self.backbone.embeddings.as_linear(hidden)
2024-10-02 18:48:15 +08:00
else:
logits = self.lm_head(hidden)
2024-10-02 18:48:15 +08:00
return logits
2024-11-22 05:25:58 +08:00
def sanitize(self, weights):
for k, v in weights.items():
if "conv1d.weight" in k and v.shape[-1] != 1:
weights[k] = v.moveaxis(2, 1)
return weights
2024-11-06 23:35:46 +08:00
def make_cache(self):
return [MambaCache() for _ in range(len(self.layers))]
2024-11-06 23:35:46 +08:00
2024-10-31 04:23:13 +08:00
@property
def layers(self):
return self.backbone.layers