2024-01-24 00:44:37 +08:00
|
|
|
import os
|
|
|
|
import time
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
import numpy as np
|
|
|
|
from mlx.utils import tree_flatten
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class TrainingArgs:
|
|
|
|
lora_layers: int = field(
|
|
|
|
default=16, metadata={"help": "Number of layers to fine-tune"}
|
|
|
|
)
|
|
|
|
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
|
|
|
|
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
|
|
|
|
val_batches: int = field(
|
|
|
|
default=25,
|
|
|
|
metadata={
|
|
|
|
"help": "Number of validation batches, -1 uses the entire validation set."
|
|
|
|
},
|
|
|
|
)
|
|
|
|
steps_per_report: int = field(
|
|
|
|
default=10,
|
|
|
|
metadata={"help": "Number of training steps between loss reporting."},
|
|
|
|
)
|
|
|
|
steps_per_eval: int = field(
|
|
|
|
default=200, metadata={"help": "Number of training steps between validations."}
|
|
|
|
)
|
|
|
|
steps_per_save: int = field(
|
|
|
|
default=100, metadata={"help": "Save the model every number steps"}
|
|
|
|
)
|
|
|
|
max_seq_length: int = field(
|
|
|
|
default=2048, metadata={"help": "Maximum sequence length."}
|
|
|
|
)
|
|
|
|
adapter_file: str = field(
|
|
|
|
default="adapter.npz",
|
|
|
|
metadata={"help": "Save/load path for the trained adapter weights."},
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def default_loss(model, inputs, targets, lengths):
|
|
|
|
logits, _ = model(inputs)
|
|
|
|
logits = logits.astype(mx.float32)
|
|
|
|
|
|
|
|
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
|
|
|
|
|
|
|
ce = nn.losses.cross_entropy(logits, targets) * length_mask
|
|
|
|
ntoks = length_mask.sum()
|
|
|
|
ce = ce.sum() / ntoks
|
|
|
|
|
|
|
|
return ce, ntoks
|
|
|
|
|
|
|
|
|
|
|
|
def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
|
|
|
|
while True:
|
|
|
|
# Shuffle indices
|
|
|
|
indices = np.arange(len(dataset))
|
|
|
|
indices = np.random.permutation(indices)
|
|
|
|
# Collect batches from dataset
|
|
|
|
for i in range(0, len(indices) - batch_size + 1, batch_size):
|
|
|
|
# Encode batch
|
|
|
|
batch = [
|
|
|
|
tokenizer.encode(dataset[indices[i + j]]) for j in range(batch_size)
|
|
|
|
]
|
|
|
|
lengths = [len(x) for x in batch]
|
|
|
|
|
|
|
|
if max(lengths) > max_seq_length:
|
|
|
|
print(
|
2024-01-26 04:38:04 +08:00
|
|
|
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
|
|
|
|
f"The longest sentence {max(lengths)} will be truncated to {max_seq_length}. "
|
2024-01-24 00:44:37 +08:00
|
|
|
"Consider pre-splitting your data to save memory."
|
|
|
|
)
|
|
|
|
|
|
|
|
# Pad to the max length
|
2024-01-26 04:38:04 +08:00
|
|
|
max_length_in_batch = min(max(lengths), max_seq_length)
|
|
|
|
batch_arr = np.zeros((batch_size, max_length_in_batch), np.int32)
|
2024-01-24 00:44:37 +08:00
|
|
|
|
|
|
|
for j in range(batch_size):
|
2024-01-26 04:38:04 +08:00
|
|
|
truncated_length = min(lengths[j], max_seq_length)
|
|
|
|
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
|
2024-02-11 23:23:27 +08:00
|
|
|
lengths[j] = (
|
|
|
|
truncated_length # Update lengths to match truncated lengths
|
|
|
|
)
|
2024-01-24 00:44:37 +08:00
|
|
|
batch = mx.array(batch_arr)
|
2024-01-26 04:38:04 +08:00
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
|
|
|
|
|
|
|
if not train:
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
def evaluate(
|
|
|
|
model,
|
|
|
|
dataset,
|
|
|
|
tokenizer,
|
|
|
|
batch_size,
|
|
|
|
num_batches,
|
|
|
|
max_seq_length=2048,
|
|
|
|
loss: callable = default_loss,
|
2024-02-17 14:13:55 +08:00
|
|
|
iterate_batches: callable = iterate_batches,
|
2024-01-24 00:44:37 +08:00
|
|
|
):
|
|
|
|
all_losses = []
|
|
|
|
ntokens = 0
|
|
|
|
for it, batch in zip(
|
|
|
|
range(num_batches),
|
|
|
|
iterate_batches(
|
|
|
|
dataset=dataset,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
batch_size=batch_size,
|
|
|
|
max_seq_length=max_seq_length,
|
|
|
|
),
|
|
|
|
):
|
|
|
|
losses, toks = loss(model, *batch)
|
|
|
|
all_losses.append((losses * toks).item())
|
|
|
|
ntokens += toks.item()
|
|
|
|
|
|
|
|
return np.sum(all_losses) / ntokens
|
|
|
|
|
|
|
|
|
2024-02-16 22:04:57 +08:00
|
|
|
class TrainingCallback:
|
|
|
|
|
2024-02-21 05:07:21 +08:00
|
|
|
def on_train_loss_report(self, train_info: dict):
|
2024-02-16 22:04:57 +08:00
|
|
|
"""Called to report training loss at specified intervals."""
|
|
|
|
pass
|
|
|
|
|
2024-02-21 05:07:21 +08:00
|
|
|
def on_val_loss_report(self, val_info: dict):
|
2024-02-16 22:04:57 +08:00
|
|
|
"""Called to report validation loss at specified intervals or the beginning."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
def train(
|
|
|
|
model,
|
|
|
|
tokenizer,
|
|
|
|
optimizer,
|
|
|
|
train_dataset,
|
|
|
|
val_dataset,
|
|
|
|
args: TrainingArgs = TrainingArgs(),
|
|
|
|
loss: callable = default_loss,
|
2024-02-16 22:04:57 +08:00
|
|
|
iterate_batches: callable = iterate_batches,
|
2024-02-21 05:07:21 +08:00
|
|
|
training_callback: TrainingCallback = None,
|
2024-01-24 00:44:37 +08:00
|
|
|
):
|
2024-02-16 22:04:57 +08:00
|
|
|
print(f"Starting training..., iters: {args.iters}")
|
|
|
|
|
2024-02-13 02:50:05 +08:00
|
|
|
# Create checkpoints directory if it does not exist
|
2024-02-13 22:56:27 +08:00
|
|
|
if not os.path.exists("checkpoints"):
|
|
|
|
os.makedirs("checkpoints")
|
2024-02-13 02:50:05 +08:00
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
# Create value and grad function for loss
|
|
|
|
loss_value_and_grad = nn.value_and_grad(model, loss)
|
|
|
|
|
|
|
|
losses = []
|
|
|
|
n_tokens = 0
|
2024-02-16 22:04:57 +08:00
|
|
|
trained_tokens = 0
|
2024-01-24 00:44:37 +08:00
|
|
|
# Main training loop
|
|
|
|
start = time.perf_counter()
|
|
|
|
for it, batch in zip(
|
|
|
|
range(args.iters),
|
|
|
|
iterate_batches(
|
|
|
|
dataset=train_dataset,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
max_seq_length=args.max_seq_length,
|
|
|
|
train=True,
|
|
|
|
),
|
|
|
|
):
|
|
|
|
# Forward and backward pass
|
|
|
|
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
|
|
|
|
|
|
|
# Model update
|
|
|
|
optimizer.update(model, grad)
|
|
|
|
|
|
|
|
mx.eval(model.parameters(), optimizer.state, lvalue)
|
|
|
|
|
|
|
|
# Record loss
|
|
|
|
losses.append(lvalue.item())
|
|
|
|
n_tokens += toks.item()
|
|
|
|
|
|
|
|
# Report training loss if needed
|
|
|
|
if (it + 1) % args.steps_per_report == 0:
|
|
|
|
train_loss = np.mean(losses)
|
|
|
|
|
|
|
|
stop = time.perf_counter()
|
2024-02-21 05:07:21 +08:00
|
|
|
learning_rate = optimizer.learning_rate.item()
|
2024-02-16 22:04:57 +08:00
|
|
|
it_sec = args.steps_per_report / (stop - start)
|
|
|
|
tokens_sec = float(n_tokens) / (stop - start)
|
|
|
|
trained_tokens += n_tokens
|
2024-01-24 00:44:37 +08:00
|
|
|
print(
|
|
|
|
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
2024-02-21 05:07:21 +08:00
|
|
|
f"Learning Rate {learning_rate:.3e}, "
|
2024-02-16 22:04:57 +08:00
|
|
|
f"It/sec {it_sec:.3f}, "
|
|
|
|
f"Tokens/sec {tokens_sec:.3f}, "
|
|
|
|
f"Trained Tokens {trained_tokens}"
|
2024-01-24 00:44:37 +08:00
|
|
|
)
|
2024-02-16 22:04:57 +08:00
|
|
|
|
|
|
|
if training_callback is not None:
|
2024-02-21 05:07:21 +08:00
|
|
|
train_info = {
|
|
|
|
"iteration": it + 1,
|
|
|
|
"train_loss": train_loss,
|
|
|
|
"learning_rate": learning_rate,
|
|
|
|
"iterations_per_second": it_sec,
|
|
|
|
"tokens_per_second": tokens_sec,
|
|
|
|
"trained_tokens": trained_tokens,
|
|
|
|
}
|
|
|
|
training_callback.on_train_loss_report(train_info)
|
2024-02-16 22:04:57 +08:00
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
losses = []
|
|
|
|
n_tokens = 0
|
|
|
|
start = time.perf_counter()
|
|
|
|
|
|
|
|
# Report validation loss if needed
|
|
|
|
if it == 0 or (it + 1) % args.steps_per_eval == 0:
|
|
|
|
stop = time.perf_counter()
|
|
|
|
val_loss = evaluate(
|
|
|
|
model=model,
|
|
|
|
dataset=val_dataset,
|
|
|
|
loss=loss,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
num_batches=args.val_batches,
|
2024-01-26 04:38:04 +08:00
|
|
|
max_seq_length=args.max_seq_length,
|
2024-02-17 14:13:55 +08:00
|
|
|
iterate_batches=iterate_batches,
|
2024-01-24 00:44:37 +08:00
|
|
|
)
|
2024-02-16 22:04:57 +08:00
|
|
|
val_time = time.perf_counter() - stop
|
2024-01-24 00:44:37 +08:00
|
|
|
print(
|
|
|
|
f"Iter {it + 1}: "
|
|
|
|
f"Val loss {val_loss:.3f}, "
|
2024-02-16 22:04:57 +08:00
|
|
|
f"Val took {val_time:.3f}s"
|
2024-01-24 00:44:37 +08:00
|
|
|
)
|
|
|
|
|
2024-02-16 22:04:57 +08:00
|
|
|
if training_callback is not None:
|
2024-02-21 05:07:21 +08:00
|
|
|
val_info = {
|
|
|
|
"iteration": it + 1,
|
|
|
|
"val_loss": val_loss,
|
2024-02-22 00:47:13 +08:00
|
|
|
"val_time": val_time,
|
2024-02-21 05:07:21 +08:00
|
|
|
}
|
|
|
|
training_callback.on_val_loss_report(val_info)
|
2024-02-16 22:04:57 +08:00
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
start = time.perf_counter()
|
|
|
|
|
2024-02-13 02:50:05 +08:00
|
|
|
# Save adapter weights if needed
|
|
|
|
if (it + 1) % args.steps_per_save == 0:
|
|
|
|
checkpoint_adapter_file = f"checkpoints/{it + 1}_{args.adapter_file}"
|
|
|
|
save_adapter(model=model, adapter_file=checkpoint_adapter_file)
|
|
|
|
print(
|
|
|
|
f"Iter {it + 1}: Saved adapter weights to {os.path.join(checkpoint_adapter_file)}."
|
|
|
|
)
|
2024-02-16 22:04:57 +08:00
|
|
|
|
2024-01-24 00:44:37 +08:00
|
|
|
# save final adapter weights
|
|
|
|
save_adapter(model=model, adapter_file=args.adapter_file)
|
|
|
|
print(f"Saved final adapter weights to {os.path.join(args.adapter_file)}.")
|
|
|
|
|
|
|
|
|
|
|
|
def save_adapter(
|
|
|
|
model: nn.Module,
|
|
|
|
adapter_file: str,
|
|
|
|
):
|
|
|
|
flattened_tree = tree_flatten(model.trainable_parameters())
|
|
|
|
|
|
|
|
mx.savez(adapter_file, **dict(flattened_tree))
|