mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 10:41:18 +08:00
810 lines
37 KiB
Python
810 lines
37 KiB
Python
![]() |
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class Mamba2Cache:
|
||
|
"""
|
||
|
Arguments:
|
||
|
config: Mamba2Config
|
||
|
batch_size: int
|
||
|
dtype: torch.dtype
|
||
|
device: torch.device
|
||
|
|
||
|
Attributes:
|
||
|
seqlen_offset: int
|
||
|
dtype: torch.dtype
|
||
|
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
|
||
|
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||
|
):
|
||
|
self.seqlen_offset = 0
|
||
|
self.dtype = dtype
|
||
|
self.conv_kernel_size = config.conv_kernel
|
||
|
self.intermediate_size = int(config.expand * config.hidden_size)
|
||
|
|
||
|
self.conv_states = {
|
||
|
i: torch.zeros(
|
||
|
batch_size,
|
||
|
self.intermediate_size + 2 * config.n_groups * config.state_size,
|
||
|
self.conv_kernel_size,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
for i in range(config.num_hidden_layers)
|
||
|
}
|
||
|
self.ssm_states = {
|
||
|
i: torch.zeros(
|
||
|
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
|
||
|
)
|
||
|
for i in range(config.num_hidden_layers)
|
||
|
}
|
||
|
self.activation = config.hidden_act
|
||
|
self.act = ACT2FN[config.hidden_act]
|
||
|
|
||
|
def update_conv_state(
|
||
|
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||
|
) -> torch.Tensor:
|
||
|
conv_state = self.conv_states[layer_idx]
|
||
|
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
||
|
|
||
|
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
||
|
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
||
|
self.conv_states[layer_idx].zero_()
|
||
|
self.conv_states[layer_idx] += conv_state
|
||
|
return self.conv_states[layer_idx]
|
||
|
|
||
|
def reset(self):
|
||
|
self.conv_states.zero_()
|
||
|
self.ssm_states.zero_()
|
||
|
|
||
|
|
||
|
class MambaRMSNormGated(torch.nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states, gate=None):
|
||
|
input_dtype = hidden_states.dtype
|
||
|
hidden_states = hidden_states.to(torch.float32)
|
||
|
|
||
|
if gate is not None:
|
||
|
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
|
||
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
|
||
|
return self.weight * hidden_states.to(input_dtype)
|
||
|
|
||
|
|
||
|
class Mamba2Mixer(nn.Module):
|
||
|
def __init__(self, config: Mamba2Config, layer_idx: int):
|
||
|
super().__init__()
|
||
|
self.num_heads = config.num_heads
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.ssm_state_size = config.state_size
|
||
|
self.conv_kernel_size = config.conv_kernel
|
||
|
self.intermediate_size = int(config.expand * self.hidden_size)
|
||
|
self.time_step_rank = int(config.time_step_rank)
|
||
|
self.layer_idx = layer_idx
|
||
|
self.use_conv_bias = config.use_conv_bias
|
||
|
self.activation = config.hidden_act
|
||
|
self.act = ACT2FN[config.hidden_act]
|
||
|
|
||
|
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||
|
self.rms_norm = config.rms_norm
|
||
|
|
||
|
self.n_groups = config.n_groups
|
||
|
self.head_dim = config.head_dim
|
||
|
self.chunk_size = config.chunk_size
|
||
|
|
||
|
self.time_step_limit = config.time_step_limit
|
||
|
self.time_step_min = config.time_step_min
|
||
|
self.time_step_max = config.time_step_max
|
||
|
|
||
|
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
||
|
self.conv1d = nn.Conv1d(
|
||
|
in_channels=self.conv_dim,
|
||
|
out_channels=self.conv_dim,
|
||
|
bias=config.use_conv_bias,
|
||
|
kernel_size=config.conv_kernel,
|
||
|
groups=self.conv_dim,
|
||
|
padding=config.conv_kernel - 1,
|
||
|
)
|
||
|
|
||
|
# projection of the input hidden states
|
||
|
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||
|
self.in_proj = nn.Linear(
|
||
|
self.hidden_size,
|
||
|
projection_size,
|
||
|
bias=config.use_bias,
|
||
|
)
|
||
|
# selective projection used to make dt, B and C input dependant
|
||
|
|
||
|
# time step projection (discretization)
|
||
|
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
||
|
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
|
||
|
|
||
|
# S4D real initialization. These are not discretized!
|
||
|
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||
|
A = torch.arange(1, self.num_heads + 1)
|
||
|
self.A_log = nn.Parameter(torch.log(A))
|
||
|
self.A_log._no_weight_decay = True
|
||
|
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||
|
self.D = nn.Parameter(torch.ones(self.num_heads))
|
||
|
self.D._no_weight_decay = True
|
||
|
|
||
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||
|
self.use_bias = config.use_bias
|
||
|
|
||
|
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
|
||
|
batch_size, seq_len, _ = input_states.shape
|
||
|
dtype = input_states.dtype
|
||
|
# Gated MLP's linear projection
|
||
|
projected_states = self.in_proj(input_states.squeeze(1))
|
||
|
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||
|
_, _, gate, hidden_states, dt = projected_states.split(
|
||
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||
|
)
|
||
|
|
||
|
# Convolution sequence transformation
|
||
|
if cache_params is not None:
|
||
|
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
||
|
ssm_state = ssm_state.to(hidden_states.device)
|
||
|
if cache_params.seqlen_offset > 0:
|
||
|
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
||
|
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||
|
# handle batched generation - states are copied through
|
||
|
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||
|
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||
|
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
|
||
|
if self.use_conv_bias:
|
||
|
hidden_states += self.conv1d.bias
|
||
|
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||
|
else:
|
||
|
hidden_states = hidden_states.transpose(1,2)
|
||
|
conv_state = nn.functional.pad(
|
||
|
hidden_states,
|
||
|
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||
|
)
|
||
|
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||
|
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||
|
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||
|
dtype = hidden_states.dtype
|
||
|
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||
|
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||
|
else:
|
||
|
ssm_state = torch.zeros(
|
||
|
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
|
||
|
device=hidden_states.device, dtype=dtype
|
||
|
)
|
||
|
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
||
|
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
|
||
|
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||
|
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||
|
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||
|
# for batched generation
|
||
|
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
|
||
|
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
|
||
|
# [num_heads] -> [num_heads, head_dim]
|
||
|
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
||
|
|
||
|
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
|
||
|
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
|
||
|
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
||
|
# [bsz, num_heads, head_dim, state_size]
|
||
|
dA = torch.exp(dt[..., None] * A)
|
||
|
|
||
|
# Discretize B
|
||
|
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
||
|
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
||
|
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||
|
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
||
|
B = B.reshape(batch_size, -1, B.shape[-1])
|
||
|
# [bsz, num_heads, head_dim, state_size]
|
||
|
dB = dt[..., None] * B[..., None, :]
|
||
|
|
||
|
# Discretize x into dB
|
||
|
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
||
|
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
||
|
dBx = dB * hidden_states[..., None]
|
||
|
|
||
|
# State calculation
|
||
|
cache_params.ssm_states[self.layer_idx].copy_(
|
||
|
cache_params.ssm_states[self.layer_idx] * dA + dBx
|
||
|
)
|
||
|
|
||
|
# Subsequent output
|
||
|
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
||
|
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||
|
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
||
|
C = C.reshape(batch_size, -1, C.shape[-1])
|
||
|
# [bsz, num_heads, head_dim]
|
||
|
|
||
|
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
|
||
|
# Reshape ssm_states to merge the first two dimensions
|
||
|
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
|
||
|
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
|
||
|
y = torch.bmm(ssm_states_reshaped, C_reshaped)
|
||
|
y = y.view(batch_size, self.num_heads, self.head_dim)
|
||
|
|
||
|
# D skip connection
|
||
|
# [num_heads] -> [num_heads, head_dim]
|
||
|
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
||
|
y = (y + hidden_states * D).to(y.dtype)
|
||
|
|
||
|
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
||
|
y = y.reshape(batch_size, -1)[:, None, ...]
|
||
|
else:
|
||
|
# begin ssd naive implementation without einsums
|
||
|
dt = nn.functional.softplus(dt + self.dt_bias)
|
||
|
dt = torch.clamp(dt, self.time_step_min)
|
||
|
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
|
||
|
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||
|
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||
|
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||
|
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||
|
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||
|
|
||
|
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
||
|
|
||
|
# Discretize x and A
|
||
|
hidden_states = hidden_states * dt[..., None]
|
||
|
A = A.to(hidden_states.dtype) * dt
|
||
|
|
||
|
# Rearrange into blocks/chunks
|
||
|
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
||
|
|
||
|
|
||
|
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
||
|
A = A.permute(0, 3, 1, 2)
|
||
|
A_cumsum = torch.cumsum(A, dim=-1)
|
||
|
|
||
|
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||
|
# This is the analog of a causal mask
|
||
|
L = torch.exp(segment_sum(A))
|
||
|
|
||
|
# First, contraction of C and B to get G (attention-weights like)
|
||
|
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
|
||
|
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
||
|
|
||
|
|
||
|
# Step 2: Compute M, equivalent to applying attention mask to weights
|
||
|
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
||
|
M = M_intermediate.sum(dim=-1)
|
||
|
|
||
|
# Step 3: Compute Y_diag (apply to values)
|
||
|
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
|
||
|
|
||
|
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||
|
|
||
|
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
||
|
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
|
||
|
# permute back B * decay states
|
||
|
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
|
||
|
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||
|
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
|
||
|
else:
|
||
|
previous_states = torch.zeros_like(states[:, :1])
|
||
|
states = torch.cat([previous_states, states], dim=1)
|
||
|
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
||
|
|
||
|
states_permuted = states.permute(0, 2, 1, 3, 4)
|
||
|
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
|
||
|
new_states = result.permute(0, 2, 1, 3, 4)
|
||
|
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
||
|
|
||
|
# Compute state -> output conversion per chunk
|
||
|
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||
|
state_decay_out = torch.exp(A_cumsum)
|
||
|
# compute Yoff
|
||
|
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
||
|
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
||
|
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
||
|
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||
|
|
||
|
y = Y_diag + Y_off
|
||
|
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
||
|
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
||
|
|
||
|
y = y + D_residual
|
||
|
# Cutting off padded chunks
|
||
|
if pad_size > 0:
|
||
|
y = y[:, :seq_len, :, :]
|
||
|
y = y.reshape(batch_size, seq_len, -1)
|
||
|
if ssm_state is not None and cache_params is not None:
|
||
|
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||
|
|
||
|
scan_output = self.norm(y, gate)
|
||
|
|
||
|
# end ssd naive
|
||
|
|
||
|
# 4. Final linear projection
|
||
|
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
|
||
|
return contextualized_states
|
||
|
|
||
|
|
||
|
class Mamba2RMSNorm(nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
"""
|
||
|
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
input_dtype = hidden_states.dtype
|
||
|
hidden_states = hidden_states.to(torch.float32)
|
||
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
return self.weight * hidden_states.to(input_dtype)
|
||
|
|
||
|
|
||
|
class Mamba2Block(nn.Module):
|
||
|
def __init__(self, config, layer_idx):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_idx = layer_idx
|
||
|
self.residual_in_fp32 = config.residual_in_fp32
|
||
|
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||
|
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
cache_params: Optional[Mamba2Cache] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
):
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
||
|
if self.residual_in_fp32:
|
||
|
residual = residual.to(torch.float32)
|
||
|
|
||
|
hidden_states = self.mixer(
|
||
|
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Mamba2PreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = Mamba2Config
|
||
|
base_model_prefix = "backbone"
|
||
|
_no_split_modules = ["Mamba2Block"]
|
||
|
supports_gradient_checkpointing = True
|
||
|
_is_stateful = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights."""
|
||
|
if isinstance(module, Mamba2Mixer):
|
||
|
module.A_log._no_weight_decay = True
|
||
|
module.D._no_weight_decay = True
|
||
|
|
||
|
dt = torch.exp(
|
||
|
torch.rand(self.config.num_heads)
|
||
|
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||
|
+ math.log(self.config.time_step_min)
|
||
|
).clamp(min=self.config.time_step_floor)
|
||
|
|
||
|
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||
|
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||
|
with torch.no_grad():
|
||
|
module.dt_bias.copy_(inv_dt)
|
||
|
module.dt_bias._no_reinit = True
|
||
|
|
||
|
if isinstance(module, nn.Linear):
|
||
|
if module.bias is not None:
|
||
|
if not getattr(module.bias, "_no_reinit", False):
|
||
|
nn.init.zeros_(module.bias)
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||
|
|
||
|
if self.config.rescale_prenorm_residual:
|
||
|
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||
|
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||
|
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||
|
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||
|
#
|
||
|
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||
|
for name, p in module.named_parameters():
|
||
|
if name in ["out_proj.weight"]:
|
||
|
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||
|
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||
|
# We need to reinit p since this code could be called multiple times
|
||
|
# Having just p *= scale would repeatedly scale it down
|
||
|
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||
|
with torch.no_grad():
|
||
|
p /= math.sqrt(self.config.num_hidden_layers)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
|
||
|
class Mamba2Output(ModelOutput):
|
||
|
"""
|
||
|
Class for the MAMBA2 model outputs.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
cache_params (`Mamba2Cache`):
|
||
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||
|
avoid providing the old `input_ids`.
|
||
|
|
||
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
cache_params: Optional[Mamba2Cache] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
|
||
|
class Mamba2CausalLMOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for causal language model (or autoregressive) outputs.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Language modeling loss (for next-token prediction).
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||
|
cache_params (`Mamba2Cache`):
|
||
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||
|
avoid providing the old `input_ids`.
|
||
|
|
||
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: Optional[torch.FloatTensor] = None
|
||
|
cache_params: Optional[Mamba2Cache] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
MAMBA2_START_DOCSTRING = r"""
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
MAMBA2_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
||
|
`input_ids`.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
cache_params (`Mamba2Cache`, *optional*):
|
||
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
MAMBA2_START_DOCSTRING,
|
||
|
)
|
||
|
class Mamba2Model(Mamba2PreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||
|
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||
|
# Initialize weights and apply final processing
|
||
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
||
|
self.post_init()
|
||
|
|
||
|
def load_hook(self, state_dict, prefix, *args):
|
||
|
for k in state_dict:
|
||
|
if "embedding." in k:
|
||
|
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
||
|
break
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings):
|
||
|
self.embeddings = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=Mamba2Output,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
||
|
cache_params: Optional[Mamba2Cache] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
**kwargs,
|
||
|
) -> Union[Tuple, Mamba2Output]:
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||
|
raise ValueError(
|
||
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||
|
)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embeddings(input_ids)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||
|
use_cache = False
|
||
|
|
||
|
if use_cache:
|
||
|
if cache_params is None:
|
||
|
cache_params = Mamba2Cache(
|
||
|
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||
|
)
|
||
|
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
||
|
elif cache_position is None:
|
||
|
# cases when we do manual forward instead of using `model.generate` which will initiate
|
||
|
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
||
|
# hack to conjecture the current cache position
|
||
|
raise ValueError(
|
||
|
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
||
|
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
||
|
"be initialized for you automatically"
|
||
|
)
|
||
|
else:
|
||
|
cache_params = None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
for mixer_block in self.layers:
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
hidden_states = self._gradient_checkpointing_func(
|
||
|
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = mixer_block(
|
||
|
hidden_states,
|
||
|
cache_params=cache_params,
|
||
|
cache_position=cache_position,
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if use_cache:
|
||
|
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||
|
|
||
|
hidden_states = self.norm_f(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||
|
|
||
|
return Mamba2Output(
|
||
|
last_hidden_state=hidden_states,
|
||
|
cache_params=cache_params if use_cache else None,
|
||
|
hidden_states=all_hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
|
||
|
embeddings).
|
||
|
""",
|
||
|
MAMBA2_START_DOCSTRING,
|
||
|
)
|
||
|
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
|
||
|
_tied_weights_keys = []
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.backbone = Mamba2Model(config)
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.backbone.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings):
|
||
|
return self.backbone.set_input_embeddings(new_embeddings)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
inputs_embeds=None,
|
||
|
use_cache=None,
|
||
|
cache_params: Optional[Mamba2Cache] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if inputs_embeds is not None:
|
||
|
past_len = inputs_embeds.shape[1] + input_ids.shape[1]
|
||
|
else:
|
||
|
past_len = input_ids.shape[1]
|
||
|
if use_cache:
|
||
|
# `cache_position` should have been initialized in `generate`
|
||
|
if cache_position is None:
|
||
|
raise ValueError(
|
||
|
"`cache_position` should not be None as it should have been initialized in "
|
||
|
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
||
|
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
||
|
)
|
||
|
# how do we detect that we are in decoding without cache?
|
||
|
if cache_position[0] > 0:
|
||
|
input_ids = input_ids[:, -1][..., None]
|
||
|
attention_mask = attention_mask[:, -1][..., None]
|
||
|
else:
|
||
|
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
||
|
# considering padding will be applied when input length is shorter, and truncation
|
||
|
# will be applied when it is longer, so it will be equivalent to always have it match
|
||
|
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
||
|
cache_position = torch.arange(0, past_len, device=input_ids.device)
|
||
|
# if the cache is not used, we also do have to extend the attention mask here
|
||
|
# TODO there is likely a cleverer way to do this
|
||
|
extended_mask = torch.ones(
|
||
|
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||
|
)
|
||
|
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||
|
cache_params = None
|
||
|
|
||
|
if attention_mask.shape[1] < past_len:
|
||
|
# we have to update manually the attention mask if
|
||
|
# we are in decoding without cache
|
||
|
# and we don't have position_ids here
|
||
|
# TODO but we should be able to use cache_position though at a later time
|
||
|
extended_mask = torch.ones(
|
||
|
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||
|
)
|
||
|
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||
|
if inputs_embeds is not None and cache_params is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids}
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"attention_mask": attention_mask,
|
||
|
"cache_params": cache_params,
|
||
|
"use_cache": use_cache,
|
||
|
"cache_position": cache_position,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=Mamba2CausalLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
cache_params: Optional[Mamba2Cache] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
**kwargs, # for now we need this for generation
|
||
|
) -> Union[Tuple, Mamba2CausalLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
mamba2_outputs = self.backbone(
|
||
|
input_ids,
|
||
|
cache_params=cache_params,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
hidden_states = mamba2_outputs[0]
|
||
|
|
||
|
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# move labels to correct device to enable model parallelism
|
||
|
labels = labels.to(logits.device)
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + mamba2_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return Mamba2CausalLMOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
cache_params=mamba2_outputs.cache_params,
|
||
|
hidden_states=mamba2_outputs.hidden_states,
|
||
|
)
|