mlx-examples/llms/mlx_lm/models/mamba2-prch.py

810 lines
37 KiB
Python
Raw Normal View History

2024-10-12 03:36:41 +08:00
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
class Mamba2Cache:
"""
Arguments:
config: Mamba2Config
batch_size: int
dtype: torch.dtype
device: torch.device
Attributes:
seqlen_offset: int
dtype: torch.dtype
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
"""
def __init__(
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
):
self.seqlen_offset = 0
self.dtype = dtype
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * config.hidden_size)
self.conv_states = {
i: torch.zeros(
batch_size,
self.intermediate_size + 2 * config.n_groups * config.state_size,
self.conv_kernel_size,
device=device,
dtype=dtype,
)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
)
for i in range(config.num_hidden_layers)
}
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
def update_conv_state(
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
) -> torch.Tensor:
conv_state = self.conv_states[layer_idx]
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
conv_state = conv_state.roll(shifts=-1, dims=-1)
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
self.conv_states[layer_idx].zero_()
self.conv_states[layer_idx] += conv_state
return self.conv_states[layer_idx]
def reset(self):
self.conv_states.zero_()
self.ssm_states.zero_()
class MambaRMSNormGated(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
if gate is not None:
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Mamba2Mixer(nn.Module):
def __init__(self, config: Mamba2Config, layer_idx: int):
super().__init__()
self.num_heads = config.num_heads
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * self.hidden_size)
self.time_step_rank = int(config.time_step_rank)
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.layer_norm_epsilon = config.layer_norm_epsilon
self.rms_norm = config.rms_norm
self.n_groups = config.n_groups
self.head_dim = config.head_dim
self.chunk_size = config.chunk_size
self.time_step_limit = config.time_step_limit
self.time_step_min = config.time_step_min
self.time_step_max = config.time_step_max
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.conv_dim,
padding=config.conv_kernel - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=config.use_bias,
)
# selective projection used to make dt, B and C input dependant
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.num_heads + 1)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
self.D = nn.Parameter(torch.ones(self.num_heads))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# Gated MLP's linear projection
projected_states = self.in_proj(input_states.squeeze(1))
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
_, _, gate, hidden_states, dt = projected_states.split(
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
ssm_state = ssm_state.to(hidden_states.device)
if cache_params.seqlen_offset > 0:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
# handle batched generation - states are copied through
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
else:
hidden_states = hidden_states.transpose(1,2)
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
else:
ssm_state = torch.zeros(
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
A = -torch.exp(self.A_log.float()) # [num_heads]
if cache_params is not None and cache_params.seqlen_offset > 0:
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = torch.exp(dt[..., None] * A)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = dB * hidden_states[..., None]
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
dt = nn.functional.softplus(dt + self.dt_bias)
dt = torch.clamp(dt, self.time_step_min)
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = self.chunk_size - (seq_len % self.chunk_size)
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
L = torch.exp(segment_sum(A))
# First, contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Step 2: Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Step 3: Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
# permute back B * decay states
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
if cache_params is not None and cache_params.seqlen_offset > 0:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
states_permuted = states.permute(0, 2, 1, 3, 4)
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
new_states = result.permute(0, 2, 1, 3, 4)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
# compute Yoff
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
return contextualized_states
class Mamba2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Mamba2Block(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
def forward(
self,
hidden_states,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
residual = hidden_states
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
hidden_states = self.mixer(
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
)
hidden_states = residual + hidden_states
return hidden_states
class Mamba2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Mamba2Config
base_model_prefix = "backbone"
_no_split_modules = ["Mamba2Block"]
supports_gradient_checkpointing = True
_is_stateful = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, Mamba2Mixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt = torch.exp(
torch.rand(self.config.num_heads)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_bias.copy_(inv_dt)
module.dt_bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_hidden_layers)
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
class Mamba2Output(ModelOutput):
"""
Class for the MAMBA2 model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (`Mamba2Cache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
cache_params: Optional[Mamba2Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
class Mamba2CausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (`Mamba2Cache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
cache_params: Optional[Mamba2Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
MAMBA2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MAMBA2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary.
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
cache_params (`Mamba2Cache`, *optional*):
If passed along, the model uses the previous state in all the blocks (which will give the output for the
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
use_cache (`bool`, *optional*):
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
MAMBA2_START_DOCSTRING,
)
class Mamba2Model(Mamba2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self._register_load_state_dict_pre_hook(self.load_hook)
self.post_init()
def load_hook(self, state_dict, prefix, *args):
for k in state_dict:
if "embedding." in k:
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
break
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Mamba2Output,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[Mamba2Cache] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[Tuple, Mamba2Output]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if use_cache:
if cache_params is None:
cache_params = Mamba2Cache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
elif cache_position is None:
# cases when we do manual forward instead of using `model.generate` which will initiate
# `cache_position` and makes sure it is not None, throw error here instead of doing some
# hack to conjecture the current cache position
raise ValueError(
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
"be initialized for you automatically"
)
else:
cache_params = None
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
)
else:
hidden_states = mixer_block(
hidden_states,
cache_params=cache_params,
cache_position=cache_position,
attention_mask=attention_mask,
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return Mamba2Output(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
@add_start_docstrings(
"""
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
embeddings).
""",
MAMBA2_START_DOCSTRING,
)
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
_tied_weights_keys = []
def __init__(self, config):
super().__init__(config)
self.backbone = Mamba2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.backbone.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.backbone.set_input_embeddings(new_embeddings)
def prepare_inputs_for_generation(
self,
input_ids,
inputs_embeds=None,
use_cache=None,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
):
if inputs_embeds is not None:
past_len = inputs_embeds.shape[1] + input_ids.shape[1]
else:
past_len = input_ids.shape[1]
if use_cache:
# `cache_position` should have been initialized in `generate`
if cache_position is None:
raise ValueError(
"`cache_position` should not be None as it should have been initialized in "
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
)
# how do we detect that we are in decoding without cache?
if cache_position[0] > 0:
input_ids = input_ids[:, -1][..., None]
attention_mask = attention_mask[:, -1][..., None]
else:
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
# considering padding will be applied when input length is shorter, and truncation
# will be applied when it is longer, so it will be equivalent to always have it match
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
cache_position = torch.arange(0, past_len, device=input_ids.device)
# if the cache is not used, we also do have to extend the attention mask here
# TODO there is likely a cleverer way to do this
extended_mask = torch.ones(
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
)
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
cache_params = None
if attention_mask.shape[1] < past_len:
# we have to update manually the attention mask if
# we are in decoding without cache
# and we don't have position_ids here
# TODO but we should be able to use cache_position though at a later time
extended_mask = torch.ones(
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
)
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"cache_params": cache_params,
"use_cache": use_cache,
"cache_position": cache_position,
}
)
return model_inputs
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Mamba2CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_params: Optional[Mamba2Cache] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs, # for now we need this for generation
) -> Union[Tuple, Mamba2CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mamba2_outputs = self.backbone(
input_ids,
cache_params=cache_params,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=use_cache,
cache_position=cache_position,
attention_mask=attention_mask,
)
hidden_states = mamba2_outputs[0]
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (logits,) + mamba2_outputs[1:]
return ((loss,) + output) if loss is not None else output
return Mamba2CausalLMOutput(
loss=loss,
logits=logits,
cache_params=mamba2_outputs.cache_params,
hidden_states=mamba2_outputs.hidden_states,
)