mlx-examples/stable_diffusion/image2image.py

95 lines
3.5 KiB
Python
Raw Normal View History

# Copyright © 2023 Apple Inc.
import argparse
import mlx.core as mx
import numpy as np
from PIL import Image
from tqdm import tqdm
from stable_diffusion import StableDiffusion
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate images from an image and a textual prompt using stable diffusion"
)
parser.add_argument("image")
parser.add_argument("prompt")
parser.add_argument("--strength", type=float, default=0.9)
parser.add_argument("--n_images", type=int, default=4)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--cfg", type=float, default=7.5)
parser.add_argument("--negative_prompt", default="")
parser.add_argument("--n_rows", type=int, default=1)
parser.add_argument("--decoding_batch_size", type=int, default=1)
2024-03-09 02:24:19 +08:00
parser.add_argument("--quantize", "-q", action="store_true")
parser.add_argument("--no-float16", dest="float16", action="store_false")
parser.add_argument("--preload-models", action="store_true")
parser.add_argument("--output", default="out.png")
2024-03-09 02:24:19 +08:00
parser.add_argument("--verbose", "-v", action="store_true")
args = parser.parse_args()
2024-03-09 02:24:19 +08:00
sd = StableDiffusion("stabilityai/stable-diffusion-2-1-base", float16=args.float16)
if args.quantize:
QuantizedLinear.quantize_module(sd.text_encoder)
QuantizedLinear.quantize_module(sd.unet, group_size=32, bits=8)
if args.preload_models:
sd.ensure_models_are_loaded()
# Read the image
img = Image.open(args.image)
# Make sure image shape is divisible by 64
W, H = (dim - dim % 64 for dim in (img.width, img.height))
if W != img.width or H != img.height:
print(f"Warning: image shape is not divisible by 64, downsampling to {W}x{H}")
img = img.resize((W, H), Image.NEAREST) # use desired downsampling filter
img = mx.array(np.array(img))
img = (img[:, :, :3].astype(mx.float32) / 255) * 2 - 1
# Noise and denoise the latents produced by encoding img.
latents = sd.generate_latents_from_image(
img,
args.prompt,
strength=args.strength,
n_images=args.n_images,
cfg_weight=args.cfg,
num_steps=args.steps,
negative_text=args.negative_prompt,
)
for x_t in tqdm(latents, total=int(args.steps * args.strength)):
mx.eval(x_t)
2024-03-09 02:24:19 +08:00
# The following is not necessary but it may help in memory
# constrained systems by reusing the memory kept by the unet and the text
# encoders.
del sd.text_encoder
del sd.unet
del sd.sampler
peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
# Decode them into images
decoded = []
for i in tqdm(range(0, args.n_images, args.decoding_batch_size)):
decoded.append(sd.decode(x_t[i : i + args.decoding_batch_size]))
mx.eval(decoded[-1])
2024-03-09 02:24:19 +08:00
peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
# Arrange them on a grid
x = mx.concatenate(decoded, axis=0)
x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
B, H, W, C = x.shape
x = x.reshape(args.n_rows, B // args.n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
x = x.reshape(args.n_rows * H, B // args.n_rows * W, C)
x = (x * 255).astype(mx.uint8)
# Save them to disc
2024-01-19 06:18:13 +08:00
im = Image.fromarray(np.array(x))
im.save(args.output)
2024-03-09 02:24:19 +08:00
# Report the peak memory used during generation
if args.verbose:
print(f"Peak memory used for the unet: {peak_mem_unet:.3f}GB")
print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")