2025-02-13 18:54:07 +08:00
|
|
|
import enum
|
|
|
|
import math
|
|
|
|
from collections import OrderedDict
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Any, Literal, NamedTuple, Optional, Union
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
2025-02-14 22:35:10 +08:00
|
|
|
from mlx_lm.models.base import BaseModelArgs, create_attention_mask
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
def _is_first_token(mask: mx.array) -> mx.array:
|
2025-02-14 00:51:06 +08:00
|
|
|
assert mask.dtype == mx.bool_ # type: ignore
|
2025-02-13 18:54:07 +08:00
|
|
|
B, Nh, q_len, kv_len = mask.shape
|
|
|
|
mask = mask[:, :, :, -q_len:]
|
|
|
|
cont = q_len != kv_len
|
|
|
|
v = False if cont else True
|
2025-02-14 00:51:06 +08:00
|
|
|
out = mx.logical_not(mx.diagonal(mask, offset=-1, axis1=-2, axis2=-1).astype(mx.bool_)) # type: ignore
|
|
|
|
out = mx.concatenate([mx.full(shape=(B, Nh, 1), dtype=mx.bool_, vals=v), out], axis=-1) # type: ignore
|
2025-02-13 18:54:07 +08:00
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def _swiglu(h: mx.array) -> mx.array:
|
|
|
|
size = h.shape[-1]
|
|
|
|
chunks = 2
|
|
|
|
_current_idx = 0
|
|
|
|
split_sizes = []
|
|
|
|
for i in range(chunks - 1):
|
|
|
|
_current_idx += size // chunks + (1 if i < size % chunks else 0)
|
|
|
|
split_sizes.append(_current_idx)
|
|
|
|
hs = mx.split(h, split_sizes, axis=-1)
|
|
|
|
return nn.silu(hs[0]) * hs[1]
|
|
|
|
|
|
|
|
|
|
|
|
class RotaryEmbedding(nn.Module):
|
2025-02-14 00:51:06 +08:00
|
|
|
def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000) -> None:
|
2025-02-13 18:54:07 +08:00
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.dim = dim
|
|
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.base = base
|
2025-02-14 00:51:06 +08:00
|
|
|
inv_freq = 1.0 / (self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim))
|
2025-02-13 18:54:07 +08:00
|
|
|
self._inv_freq = inv_freq
|
|
|
|
|
|
|
|
# Build here to make `torch.jit.trace` work.
|
|
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, dtype=mx.float32)
|
|
|
|
|
|
|
|
def _set_cos_sin_cache(self, seq_len: int, dtype: Any) -> None:
|
|
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
t = mx.arange(self.max_seq_len_cached, dtype=self._inv_freq.dtype) # type: ignore
|
|
|
|
|
|
|
|
freqs = mx.einsum("i,j->ij", t, self._inv_freq)
|
|
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
|
|
emb = mx.concatenate([freqs, freqs], axis=-1)
|
|
|
|
self._cos_cached = emb.cos()[None, None, :, :].astype(mx.float32)
|
|
|
|
self._sin_cached = emb.sin()[None, None, :, :].astype(mx.float32)
|
|
|
|
|
|
|
|
def __call__(self, x: mx.array, seq_len: int) -> tuple[mx.array, mx.array]:
|
|
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
|
|
if seq_len > self.max_seq_len_cached:
|
|
|
|
self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype)
|
|
|
|
|
|
|
|
return (
|
|
|
|
self._cos_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore
|
|
|
|
self._sin_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _rotate_half(x: mx.array) -> mx.array:
|
|
|
|
"""Rotates half the hidden dims of the input."""
|
|
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
|
|
return mx.concatenate([-x2, x1], axis=-1)
|
|
|
|
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def _rotary_pos_emb(x: mx.array, cos: mx.array, sin: mx.array, position_ids: mx.array) -> mx.array:
|
2025-02-13 18:54:07 +08:00
|
|
|
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
|
|
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
|
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
|
|
cos = mx.expand_dims(cos[position_ids], 1) # [bs, 1, seq_len, dim]
|
|
|
|
sin = mx.expand_dims(sin[position_ids], 1) # [bs, 1, seq_len, dim]
|
|
|
|
x_embed = (x * cos) + (_rotate_half(x) * sin)
|
|
|
|
return x_embed
|
|
|
|
|
|
|
|
|
|
|
|
class LinearType(str, enum.Enum):
|
|
|
|
Normal = "normal"
|
|
|
|
Fp8 = "fp8"
|
|
|
|
Fp8Retain = "fp8-retain"
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs): # type: ignore
|
|
|
|
model_type: str = "plamo2"
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
hidden_size: int = 4096,
|
|
|
|
num_hidden_layers: int = 32,
|
|
|
|
rms_norm_eps: float = 1e-6,
|
|
|
|
tie_word_embeddings: bool = True,
|
|
|
|
# Attention
|
|
|
|
num_attention_heads: int = 32,
|
|
|
|
num_key_value_heads: int = 4,
|
|
|
|
hidden_size_per_head: int = 128,
|
|
|
|
max_position_embeddings: int = 2048,
|
|
|
|
attention_window_size: int = 2048,
|
|
|
|
full_attention_idx: list[int] | None = None,
|
|
|
|
# Mamba
|
|
|
|
mamba_d_state: int = 64,
|
|
|
|
mamba_d_conv: int = 4,
|
|
|
|
mamba_num_heads: int = 64,
|
|
|
|
mamba_step: int = 2,
|
|
|
|
mamba_chunk_size: int = 256,
|
|
|
|
mamba_enabled: bool = True,
|
|
|
|
# MLP
|
|
|
|
intermediate_size: int = 13312,
|
|
|
|
# Tokenizer
|
|
|
|
vocab_size: int = 32000,
|
|
|
|
tokenizer_class: str = "PlamoTokenizer",
|
|
|
|
pad_token_id: Optional[int] = None,
|
|
|
|
bos_token_id: int = 1,
|
|
|
|
eos_token_id: int = 2,
|
|
|
|
# Multimodal
|
|
|
|
image_token_id: Optional[int] = None,
|
|
|
|
image_feature_size: Optional[int] = None,
|
|
|
|
image_proj_type: Literal["linear", "mlp"] = "linear",
|
|
|
|
# FP8
|
|
|
|
linear_type: LinearType = LinearType.Normal,
|
|
|
|
fp8_accum_dtype: Optional[str] = None,
|
|
|
|
# Evaluation
|
|
|
|
eval_attention_n_bit: Optional[int] = None,
|
|
|
|
eval_mlp_n_bit: Optional[int] = None,
|
|
|
|
use_cache: bool = True,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> None:
|
|
|
|
# max_position_embeddings is often used to determine the max length during inference,
|
|
|
|
# but samba should have extrapolation abilities
|
|
|
|
self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings)
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.rms_norm_eps = rms_norm_eps
|
|
|
|
|
|
|
|
self.num_hidden_layers = num_hidden_layers
|
|
|
|
self.num_attention_heads = num_attention_heads
|
|
|
|
self.hidden_size_per_head = hidden_size_per_head
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
|
|
self.attention_window_size = attention_window_size
|
2025-02-14 00:51:06 +08:00
|
|
|
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else []
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
self.mamba_d_state = mamba_d_state
|
|
|
|
self.mamba_d_conv = mamba_d_conv
|
|
|
|
self.mamba_num_heads = mamba_num_heads
|
|
|
|
self.mamba_step = mamba_step
|
|
|
|
self.mamba_chunk_size = mamba_chunk_size
|
|
|
|
self.mamba_enabled = mamba_enabled
|
|
|
|
|
|
|
|
self.intermediate_size = intermediate_size
|
|
|
|
|
|
|
|
self.vocab_size = vocab_size
|
|
|
|
|
|
|
|
self.image_token_id = image_token_id
|
|
|
|
self.image_feature_size = image_feature_size
|
|
|
|
self.image_proj_type = image_proj_type
|
|
|
|
|
|
|
|
self.linear_type = linear_type
|
|
|
|
self.fp8_accum_dtype = fp8_accum_dtype
|
|
|
|
|
|
|
|
self.eval_attention_n_bit = eval_attention_n_bit
|
|
|
|
self.eval_mlp_n_bit = eval_mlp_n_bit
|
|
|
|
self.use_cache = use_cache
|
|
|
|
|
|
|
|
# fields for vLLM
|
|
|
|
self.sliding_window = attention_window_size
|
|
|
|
|
|
|
|
self.tokenizer_class = tokenizer_class
|
|
|
|
self.pad_token_id = pad_token_id
|
|
|
|
self.bos_token_id = bos_token_id
|
|
|
|
self.eos_token_id = eos_token_id
|
|
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
|
|
|
|
|
# From PretrainedConfig of transformers
|
|
|
|
self.use_return_dict = kwargs.pop("use_return_dict", True)
|
|
|
|
self.output_attentions = kwargs.pop("output_attentions", False)
|
|
|
|
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
|
|
|
|
|
|
|
|
|
|
|
class PlamoAttentionCache(nn.Module):
|
|
|
|
def __init__(self, key: mx.array, value: mx.array) -> None:
|
|
|
|
super().__init__()
|
|
|
|
B, nh, L, c = key.shape
|
|
|
|
assert len(value.shape) == 4
|
|
|
|
assert value.shape[0] == B
|
|
|
|
assert value.shape[2] == L
|
|
|
|
self.key = key
|
|
|
|
self.value = value
|
|
|
|
|
|
|
|
|
|
|
|
class PlamoMambaCache(nn.Module):
|
|
|
|
def __init__(self, conv_state: mx.array, ssm_state: mx.array) -> None:
|
|
|
|
super().__init__()
|
|
|
|
# conv_state: [B, C, d_conv]
|
|
|
|
# ssm_state: [B, nhead, nchanel_per_head, d_state]
|
|
|
|
assert len(conv_state.shape) == 3
|
|
|
|
assert len(ssm_state.shape) == 4
|
|
|
|
assert conv_state.shape[0] == ssm_state.shape[0]
|
|
|
|
self.conv_state = conv_state
|
|
|
|
self.ssm_state = ssm_state
|
|
|
|
|
|
|
|
|
|
|
|
PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache
|
|
|
|
|
|
|
|
|
|
|
|
class PlamoCache(nn.Module):
|
|
|
|
"""
|
|
|
|
stores states of the model for fast decoding.
|
|
|
|
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are
|
|
|
|
deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use
|
|
|
|
other architectures (e.g., Mamba).
|
|
|
|
This class provides a similar interface to `transformers.Cache`, but is designed to also handle
|
|
|
|
the state of Mamba properly.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
2025-02-14 00:51:06 +08:00
|
|
|
self.cache: list[Optional[PlamoLayerCache]] = [None for _ in range(config.num_hidden_layers)]
|
2025-02-13 18:54:07 +08:00
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def append_kv(self, key: mx.array, value: mx.array, layer_idx: int) -> tuple[mx.array, mx.array]:
|
2025-02-13 18:54:07 +08:00
|
|
|
c = self.cache[layer_idx]
|
|
|
|
if c is None:
|
|
|
|
return key, value
|
|
|
|
assert isinstance(c, PlamoAttentionCache)
|
|
|
|
|
|
|
|
def _validate(cache: mx.array, new_tensor: mx.array) -> None:
|
|
|
|
assert len(cache.shape) == 4
|
|
|
|
assert len(new_tensor.shape) == 4
|
|
|
|
assert cache.shape[0] == new_tensor.shape[0]
|
|
|
|
assert cache.shape[1] == new_tensor.shape[1]
|
|
|
|
assert cache.shape[3] == new_tensor.shape[3]
|
|
|
|
|
|
|
|
_validate(c.key, key)
|
|
|
|
_validate(c.value, value)
|
|
|
|
assert key.shape[2] == value.shape[2]
|
2025-02-14 00:51:06 +08:00
|
|
|
return mx.concatenate([c.key, key], axis=2), mx.concatenate([c.value, value], axis=2)
|
2025-02-13 18:54:07 +08:00
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def update_attention(self, key_states: mx.array, value_states: mx.array, layer_idx: int) -> PlamoAttentionCache:
|
2025-02-13 18:54:07 +08:00
|
|
|
full_attn = layer_idx in self.config.full_attention_idx
|
|
|
|
window_size = self.config.attention_window_size
|
|
|
|
|
|
|
|
if self.cache[layer_idx] is None:
|
|
|
|
if full_attn:
|
|
|
|
self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states)
|
|
|
|
else:
|
|
|
|
self.cache[layer_idx] = PlamoAttentionCache(
|
|
|
|
key_states[:, :, -window_size:, :],
|
|
|
|
value_states[:, :, -window_size:, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
c = self.cache[layer_idx]
|
|
|
|
assert isinstance(c, PlamoAttentionCache)
|
|
|
|
k, v = self.append_kv(key_states, value_states, layer_idx)
|
|
|
|
if full_attn:
|
|
|
|
c.key = k
|
|
|
|
c.value = v
|
|
|
|
else:
|
|
|
|
c.key = k[:, :, -window_size:, :]
|
|
|
|
c.value = v[:, :, -window_size:, :]
|
2025-02-14 00:51:06 +08:00
|
|
|
self.cache[layer_idx] = c
|
2025-02-13 18:54:07 +08:00
|
|
|
return self.cache[layer_idx] # type: ignore
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def update_mamba(self, conv_state: mx.array, ssm_state: mx.array, layer_idx: int) -> PlamoMambaCache:
|
2025-02-13 18:54:07 +08:00
|
|
|
if self.cache[layer_idx] is None:
|
|
|
|
self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state)
|
|
|
|
else:
|
|
|
|
c = self.cache[layer_idx]
|
|
|
|
assert isinstance(c, PlamoMambaCache)
|
|
|
|
assert c.conv_state.shape == conv_state.shape
|
|
|
|
assert c.ssm_state.shape == ssm_state.shape
|
|
|
|
c.conv_state = conv_state
|
|
|
|
c.ssm_state = ssm_state
|
|
|
|
return self.cache[layer_idx] # type: ignore
|
|
|
|
|
|
|
|
def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None:
|
|
|
|
assert layer_idx < len(self.cache)
|
|
|
|
layer_cache = self.cache[layer_idx]
|
|
|
|
return layer_cache # type: ignore
|
2025-02-14 21:38:13 +08:00
|
|
|
|
2025-02-14 20:11:30 +08:00
|
|
|
@property
|
|
|
|
def state(self):
|
|
|
|
return self.cache
|
|
|
|
|
|
|
|
@state.setter
|
|
|
|
def state(self, v):
|
|
|
|
self.cache = v
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return len(self.cache)
|
|
|
|
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
|
|
|
|
if layer_idx is not None:
|
|
|
|
c = self.cache[layer_idx]
|
|
|
|
assert isinstance(c, PlamoAttentionCache)
|
|
|
|
return c.key.shape[2] # type: ignore
|
|
|
|
|
2025-02-14 20:11:30 +08:00
|
|
|
sequence_length: int = 0
|
2025-02-13 18:54:07 +08:00
|
|
|
for layer_cache in self.cache:
|
|
|
|
if isinstance(layer_cache, PlamoAttentionCache):
|
|
|
|
sequence_length = (
|
|
|
|
max(layer_cache.key.shape[2], sequence_length)
|
|
|
|
if sequence_length is not None
|
|
|
|
else layer_cache.key.shape[2]
|
|
|
|
)
|
|
|
|
return sequence_length
|
|
|
|
|
|
|
|
def get_max_length(self) -> int | None:
|
|
|
|
return None
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
2025-02-13 18:54:07 +08:00
|
|
|
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
|
|
|
# Cache without size limit -> all cache is usable
|
|
|
|
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
|
|
|
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
|
|
|
max_length = self.get_max_length()
|
|
|
|
previous_seq_length = self.get_seq_length(layer_idx)
|
|
|
|
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
|
|
|
return max_length - new_seq_length
|
|
|
|
return previous_seq_length
|
|
|
|
|
|
|
|
def reorder_cache(self, beam_idx: mx.array) -> None:
|
|
|
|
def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache:
|
|
|
|
return PlamoMambaCache(
|
|
|
|
conv_state=mx.take(cache.conv_state, beam_idx, axis=0),
|
|
|
|
ssm_state=mx.take(cache.ssm_state, beam_idx, axis=0),
|
|
|
|
)
|
|
|
|
|
|
|
|
def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache:
|
|
|
|
return PlamoAttentionCache(
|
|
|
|
key=mx.take(cache.key, beam_idx, axis=0),
|
|
|
|
value=mx.take(cache.value, beam_idx, axis=0),
|
|
|
|
)
|
|
|
|
|
|
|
|
for i in range(len(self.cache)):
|
|
|
|
if self.cache[i] is None:
|
|
|
|
continue
|
|
|
|
layer_cache = self.cache[i]
|
|
|
|
if isinstance(layer_cache, PlamoMambaCache):
|
|
|
|
self.cache[i] = _mamba(layer_cache)
|
|
|
|
else:
|
|
|
|
assert isinstance(layer_cache, PlamoAttentionCache)
|
|
|
|
self.cache[i] = _attention(layer_cache)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def seen_tokens(self) -> int | None:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
class DecoderInput(NamedTuple):
|
|
|
|
hidden_states: mx.array
|
|
|
|
attention_mask: Optional[mx.array] = None
|
|
|
|
past_states: Optional[PlamoCache] = None
|
|
|
|
output_hidden_states: Optional[bool] = False
|
|
|
|
output_attentions: Optional[bool] = False
|
|
|
|
gradient_checkpointing: bool = False
|
|
|
|
input_ids: Optional[mx.array] = None
|
|
|
|
|
|
|
|
|
|
|
|
class DecoderOutput(NamedTuple):
|
|
|
|
hidden_states: mx.array
|
|
|
|
all_hidden_states: Optional[tuple[mx.array, ...]]
|
|
|
|
all_self_attns: Optional[tuple[mx.array, ...]]
|
|
|
|
|
|
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
2025-02-14 00:51:06 +08:00
|
|
|
def _make_causal_mask(input_ids_shape: tuple[int, int], dtype: mx.Dtype, past_key_values_length: int = 0) -> mx.array:
|
2025-02-13 18:54:07 +08:00
|
|
|
"""
|
|
|
|
Make causal mask used for bi-directional self-attention.
|
|
|
|
"""
|
|
|
|
bsz, tgt_len = input_ids_shape
|
|
|
|
mask = mx.full((tgt_len, tgt_len), float("-inf"))
|
|
|
|
mask_cond = mx.arange(mask.shape[-1])
|
|
|
|
mask = mx.where(mask_cond < (mask_cond + 1).reshape((mask.shape[-1], 1)), 0, mask)
|
|
|
|
mask = mask.astype(dtype)
|
|
|
|
|
|
|
|
if past_key_values_length > 0:
|
2025-02-14 00:51:06 +08:00
|
|
|
mask = mx.concatenate([mx.zeros((tgt_len, past_key_values_length), dtype=dtype), mask], axis=-1)
|
|
|
|
return mx.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length))
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
2025-02-14 00:51:06 +08:00
|
|
|
def _expand_mask(mask: mx.array, dtype: mx.Dtype, tgt_len: Optional[int] = None) -> mx.array:
|
2025-02-13 18:54:07 +08:00
|
|
|
"""
|
|
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
|
|
"""
|
|
|
|
bsz, src_len = mask.shape
|
|
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
expanded_mask = mx.broadcast_to(mask[:, None, None, :], (bsz, 1, tgt_len, src_len)).astype(dtype)
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
|
|
|
|
return mx.where(inverted_mask.astype(mx.bool_), float("-inf"), inverted_mask) # type: ignore
|
|
|
|
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def _rms_norm(hidden_states: mx.array, weight: Optional[mx.array], eps: float, offset: float = 1.0) -> mx.array:
|
2025-02-13 18:54:07 +08:00
|
|
|
input_dtype = hidden_states.dtype
|
|
|
|
hidden_states = hidden_states.astype(mx.float32)
|
|
|
|
variance = mx.power(hidden_states, 2).mean(-1, keepdims=True)
|
|
|
|
hidden_states = hidden_states * mx.rsqrt(variance + eps)
|
|
|
|
hidden_states = hidden_states.astype(input_dtype)
|
|
|
|
if weight is not None:
|
|
|
|
hidden_states = (offset + weight) * hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
hidden_size: int,
|
|
|
|
eps: float = 1e-6,
|
|
|
|
offset: float = 1.0,
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.weight = mx.zeros(hidden_size)
|
|
|
|
self.variance_epsilon = eps
|
|
|
|
self.offset = offset
|
|
|
|
|
|
|
|
def __call__(self, hidden_states: mx.array) -> mx.array:
|
2025-02-14 00:51:06 +08:00
|
|
|
return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset)
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_initial_dt_bias(num_heads: int) -> mx.array:
|
|
|
|
dt_min = 0.001
|
|
|
|
dt_max = 0.1
|
2025-02-14 00:51:06 +08:00
|
|
|
dt = mx.exp(mx.random.uniform(shape=(num_heads,)) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min))
|
2025-02-13 18:54:07 +08:00
|
|
|
dt = mx.clip(dt, a_min=1e-4, a_max=None)
|
|
|
|
inv_dt = dt + mx.log(-mx.expm1(-dt))
|
|
|
|
return inv_dt
|
|
|
|
|
|
|
|
|
|
|
|
def get_initial_A(num_heads: int) -> mx.array:
|
|
|
|
A = mx.arange(1, num_heads + 1, dtype=mx.float32)
|
|
|
|
return mx.log(A)
|
|
|
|
|
|
|
|
|
2025-02-23 13:43:14 +08:00
|
|
|
# From: https://github.com/state-spaces/mamba/blob/0cce0fa645f100f00620ddf2333c2b7712abfdec/mamba_ssm/ops/triton/selective_state_update.py#L219
|
2025-02-14 00:51:06 +08:00
|
|
|
def selective_state_update_ref(
|
|
|
|
state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False
|
|
|
|
) -> tuple[mx.array, mx.array]:
|
|
|
|
"""
|
|
|
|
Argument:
|
|
|
|
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
|
|
|
x: (batch, dim) or (batch, nheads, dim)
|
|
|
|
dt: (batch, dim) or (batch, nheads, dim)
|
|
|
|
A: (dim, dstate) or (nheads, dim, dstate)
|
|
|
|
B: (batch, dstate) or (batch, ngroups, dstate)
|
|
|
|
C: (batch, dstate) or (batch, ngroups, dstate)
|
|
|
|
D: (dim,) or (nheads, dim)
|
|
|
|
z: (batch, dim) or (batch, nheads, dim)
|
|
|
|
dt_bias: (dim,) or (nheads, dim)
|
|
|
|
Return:
|
|
|
|
out: (batch, dim) or (batch, nheads, dim)
|
|
|
|
"""
|
|
|
|
has_heads = state.ndim > 3
|
|
|
|
if state.ndim == 3:
|
|
|
|
state = mx.expand_dims(state, 1)
|
|
|
|
if x.ndim == 2:
|
|
|
|
x = mx.expand_dims(x, 1)
|
|
|
|
if dt.ndim == 2:
|
|
|
|
dt = mx.expand_dims(dt, 1)
|
|
|
|
if A.ndim == 2:
|
|
|
|
A = mx.expand_dims(A, 0)
|
|
|
|
if B.ndim == 2:
|
|
|
|
B = mx.expand_dims(B, 1)
|
|
|
|
if C.ndim == 2:
|
|
|
|
C = mx.expand_dims(C, 1)
|
|
|
|
if D is not None and D.ndim == 1:
|
|
|
|
D = mx.expand_dims(D, 0)
|
|
|
|
if z is not None and z.ndim == 2:
|
|
|
|
z = mx.expand_dims(z, 1)
|
|
|
|
if dt_bias is not None and dt_bias.ndim == 1:
|
|
|
|
dt_bias = mx.expand_dims(dt_bias, 0)
|
|
|
|
batch, nheads, dim, dstate = state.shape
|
|
|
|
assert x.shape == (batch, nheads, dim)
|
|
|
|
assert dt.shape == x.shape
|
|
|
|
assert A.shape == (nheads, dim, dstate)
|
|
|
|
ngroups = B.shape[1]
|
|
|
|
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
|
|
|
|
assert B.shape == (batch, ngroups, dstate)
|
|
|
|
assert C.shape == B.shape
|
|
|
|
if D is not None:
|
|
|
|
assert D.shape == (nheads, dim)
|
|
|
|
if z is not None:
|
|
|
|
assert z.shape == x.shape
|
|
|
|
if dt_bias is not None:
|
|
|
|
assert dt_bias.shape == (nheads, dim)
|
|
|
|
dt = dt + dt_bias
|
|
|
|
dt = nn.softplus(dt) if dt_softplus else dt
|
|
|
|
dA = mx.exp(mx.expand_dims(dt, axis=-1) * A) # (batch, nheads, dim, dstate)
|
|
|
|
B = mx.reshape(
|
|
|
|
mx.tile(mx.expand_dims(B, axis=2), (1, 1, nheads // ngroups, 1)),
|
|
|
|
(batch, nheads, dstate),
|
|
|
|
) # (batch, nheads, dstate)
|
|
|
|
C = mx.reshape(
|
|
|
|
mx.tile(mx.expand_dims(C, axis=2), (1, 1, nheads // ngroups, 1)),
|
|
|
|
(batch, nheads, dstate),
|
|
|
|
) # (batch, nheads, dstate)
|
|
|
|
dB = mx.expand_dims(dt, axis=-1) * mx.expand_dims(B, axis=-2) # (batch, nheads, dim, dstate)
|
|
|
|
state = state * dA + dB * mx.expand_dims(x, axis=-1) # (batch, dim, dstate
|
|
|
|
out = mx.einsum("bhdn,bhn->bhd", state.astype(C.dtype), C)
|
|
|
|
if D is not None:
|
|
|
|
out += (x * D).astype(out.dtype)
|
|
|
|
out = (out if z is None else out * nn.silu(z)).astype(x.dtype)
|
|
|
|
if not has_heads:
|
|
|
|
out = out.squeeze(1)
|
|
|
|
return out, state
|
|
|
|
|
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
def ssd_update_state(
|
|
|
|
ssm_state: mx.array,
|
|
|
|
x: mx.array,
|
|
|
|
dt: mx.array,
|
|
|
|
A: mx.array,
|
|
|
|
B: mx.array,
|
|
|
|
C: mx.array,
|
|
|
|
D: mx.array,
|
|
|
|
z: mx.array,
|
|
|
|
dt_bias: mx.array,
|
|
|
|
dt_softplus: bool,
|
|
|
|
) -> tuple[mx.array, mx.array]:
|
|
|
|
assert ssm_state.dtype == mx.float32
|
2025-02-14 21:38:13 +08:00
|
|
|
dtype = x.dtype
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
hidden_size_per_head = x.shape[-1]
|
|
|
|
d_state = B.shape[-1]
|
2025-02-14 00:51:06 +08:00
|
|
|
A = mx.broadcast_to(A[:, None, None], (A.shape[0], hidden_size_per_head, d_state)).astype(mx.float32)
|
|
|
|
dt = mx.broadcast_to(dt[..., None], (dt.shape[0], dt.shape[1], hidden_size_per_head))
|
|
|
|
dt_bias = mx.broadcast_to(dt_bias[:, None], (dt_bias.shape[0], hidden_size_per_head))
|
2025-02-13 18:54:07 +08:00
|
|
|
D = mx.broadcast_to(D[:, None], (D.shape[0], hidden_size_per_head))
|
2025-02-14 00:51:06 +08:00
|
|
|
out, ssm_state = selective_state_update_ref(
|
2025-02-13 18:54:07 +08:00
|
|
|
ssm_state,
|
2025-02-14 21:38:13 +08:00
|
|
|
x.astype(dtype),
|
|
|
|
dt.astype(dtype),
|
|
|
|
A.astype(mx.float32),
|
|
|
|
B.astype(dtype),
|
|
|
|
C.astype(dtype),
|
|
|
|
D.astype(mx.float32),
|
|
|
|
z.astype(dtype),
|
|
|
|
dt_bias.astype(mx.float32),
|
2025-02-13 18:54:07 +08:00
|
|
|
dt_softplus=dt_softplus,
|
|
|
|
)
|
|
|
|
return out[:, None], ssm_state
|
|
|
|
|
|
|
|
|
|
|
|
def _ssd_chunk_scan_combined_naive(
|
|
|
|
x: mx.array,
|
|
|
|
dt: mx.array,
|
|
|
|
A: mx.array,
|
|
|
|
B: mx.array,
|
|
|
|
C: mx.array,
|
|
|
|
D: mx.array,
|
|
|
|
z: mx.array,
|
|
|
|
dt_bias: mx.array,
|
|
|
|
dt_softplus: bool,
|
|
|
|
seq_idx: mx.array | None,
|
|
|
|
ssm_state: mx.array,
|
|
|
|
) -> tuple[mx.array, mx.array]:
|
|
|
|
assert ssm_state.dtype == mx.float32
|
|
|
|
length = x.shape[1]
|
|
|
|
ys = []
|
|
|
|
for i in range(length):
|
|
|
|
if i != 0 and seq_idx is not None:
|
|
|
|
ssm_state = mx.where(
|
|
|
|
mx.array(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None],
|
|
|
|
mx.zeros_like(ssm_state),
|
|
|
|
ssm_state,
|
|
|
|
)
|
|
|
|
y, ssm_state = ssd_update_state(
|
|
|
|
ssm_state,
|
|
|
|
x[:, i],
|
|
|
|
dt[:, i],
|
|
|
|
A,
|
|
|
|
B[:, i],
|
|
|
|
C[:, i],
|
2025-02-14 00:51:06 +08:00
|
|
|
D if D.ndim == 1 else D[:, i],
|
2025-02-13 18:54:07 +08:00
|
|
|
z=z[:, i],
|
|
|
|
dt_bias=dt_bias,
|
|
|
|
dt_softplus=dt_softplus,
|
|
|
|
)
|
|
|
|
ys.append(y)
|
|
|
|
return mx.concatenate(ys, axis=1), ssm_state
|
|
|
|
|
|
|
|
|
|
|
|
def ssd_chunk_scan_combined(
|
|
|
|
x: mx.array,
|
|
|
|
dt: mx.array,
|
|
|
|
A: mx.array,
|
|
|
|
B: mx.array,
|
|
|
|
C: mx.array,
|
|
|
|
chunk_size: int,
|
|
|
|
D: mx.array,
|
|
|
|
z: mx.array,
|
|
|
|
dt_bias: mx.array,
|
|
|
|
dt_softplus: bool,
|
2025-02-14 21:38:13 +08:00
|
|
|
return_final_states: bool,
|
2025-02-13 18:54:07 +08:00
|
|
|
seq_idx: mx.array | None,
|
|
|
|
ssm_state: mx.array | None,
|
2025-02-14 21:38:13 +08:00
|
|
|
) -> tuple[mx.array, mx.array] | mx.array:
|
2025-02-13 18:54:07 +08:00
|
|
|
if seq_idx is not None:
|
|
|
|
assert seq_idx.dtype == mx.int32
|
|
|
|
assert ssm_state is None
|
2025-02-14 21:38:13 +08:00
|
|
|
assert not return_final_states
|
2025-02-13 18:54:07 +08:00
|
|
|
if ssm_state is not None:
|
|
|
|
assert ssm_state.dtype == mx.float32
|
|
|
|
assert seq_idx is None
|
|
|
|
"""
|
|
|
|
state will be updates by following:
|
|
|
|
```
|
|
|
|
dt = softplus(dt)
|
|
|
|
dA = exp(dt * A)
|
|
|
|
state_next = state * dA + dB * x
|
|
|
|
```
|
|
|
|
To avoid updating state, we set dt to -inf and x to 0
|
|
|
|
because `softplus(-inf) = 0` and `exp(0) = 1`
|
|
|
|
"""
|
|
|
|
if ssm_state is None:
|
|
|
|
bsize, _, num_heads, channel = x.shape
|
|
|
|
state = B.shape[-1]
|
|
|
|
ssm_state = mx.zeros((bsize, num_heads, channel, state), dtype=mx.float32)
|
2025-02-14 00:51:06 +08:00
|
|
|
tmp, ssm_state = _ssd_chunk_scan_combined_naive(
|
2025-02-13 18:54:07 +08:00
|
|
|
x,
|
|
|
|
dt,
|
|
|
|
A,
|
|
|
|
B,
|
|
|
|
C,
|
|
|
|
D,
|
|
|
|
z=z,
|
|
|
|
dt_bias=dt_bias,
|
|
|
|
dt_softplus=dt_softplus,
|
|
|
|
seq_idx=seq_idx,
|
|
|
|
ssm_state=ssm_state,
|
|
|
|
)
|
2025-02-14 21:38:13 +08:00
|
|
|
if return_final_states:
|
|
|
|
return tmp, ssm_state
|
|
|
|
else:
|
|
|
|
return tmp
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
def _causal_conv1d(
|
|
|
|
conv_state: mx.array | None, weight: mx.array, x: mx.array, seq_idx: mx.array | None
|
|
|
|
) -> tuple[mx.array, mx.array | None]:
|
|
|
|
dtype = x.dtype
|
|
|
|
if conv_state is not None:
|
|
|
|
dtype = conv_state.dtype
|
|
|
|
assert seq_idx is None
|
|
|
|
if seq_idx is not None:
|
|
|
|
assert seq_idx.dtype == mx.int32
|
|
|
|
assert conv_state is None
|
2025-02-14 21:38:13 +08:00
|
|
|
weight = weight.astype(dtype)
|
2025-02-13 18:54:07 +08:00
|
|
|
x = x.astype(dtype)
|
|
|
|
|
|
|
|
return_final_states = conv_state is not None
|
|
|
|
if conv_state is None:
|
|
|
|
bsize = x.shape[0]
|
|
|
|
dim = weight.shape[0]
|
|
|
|
d_conv = weight.shape[-1]
|
|
|
|
conv_state = mx.zeros((bsize, dim, d_conv - 1), dtype=x.dtype)
|
|
|
|
length = x.shape[-1]
|
|
|
|
out = mx.zeros_like(x)
|
|
|
|
for i in range(length):
|
|
|
|
if i != 0 and seq_idx is not None:
|
|
|
|
conv_state = mx.where(
|
2025-02-14 21:38:13 +08:00
|
|
|
seq_idx[:, i - 1][:, None, None] != seq_idx[:, i][:, None, None],
|
2025-02-13 18:54:07 +08:00
|
|
|
mx.zeros_like(conv_state),
|
|
|
|
conv_state,
|
|
|
|
)
|
2025-02-14 00:51:06 +08:00
|
|
|
out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1])
|
2025-02-13 18:54:07 +08:00
|
|
|
x = out
|
|
|
|
if return_final_states:
|
|
|
|
return x, conv_state
|
|
|
|
else:
|
|
|
|
return x, None
|
|
|
|
|
|
|
|
|
2025-02-23 13:43:14 +08:00
|
|
|
# From: https://github.com/Dao-AILab/causal-conv1d/blob/82867a9d2e6907cc0f637ac6aff318f696838548/causal_conv1d/causal_conv1d_interface.py#L206
|
|
|
|
def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None) -> tuple[mx.array, mx.array]:
|
2025-02-14 00:51:06 +08:00
|
|
|
"""
|
|
|
|
x: (batch, dim) or (batch, dim, seqlen)
|
|
|
|
conv_state: (batch, dim, state_len), where state_len >= width - 1
|
|
|
|
weight: (dim, width)
|
|
|
|
bias: (dim,)
|
|
|
|
|
|
|
|
out: (batch, dim) or (batch, dim, seqlen)
|
|
|
|
"""
|
|
|
|
if activation not in [None, "silu", "swish"]:
|
|
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
|
|
dtype_in = x.dtype
|
|
|
|
unsqueeze = x.ndim == 2
|
|
|
|
if unsqueeze:
|
|
|
|
x = x.unsqueeze(-1)
|
|
|
|
batch, dim, seqlen = x.shape
|
|
|
|
width = weight.shape[1]
|
|
|
|
state_len = conv_state.shape[-1]
|
|
|
|
assert conv_state.shape == (batch, dim, state_len)
|
|
|
|
assert weight.shape == (dim, width)
|
2025-02-23 13:43:14 +08:00
|
|
|
x_new = mx.concatenate([conv_state, x], axis=-1).astype(weight.dtype) # (batch, dim, state_len + seqlen)
|
|
|
|
conv_state = x_new[:, :, -state_len:]
|
2025-02-14 00:51:06 +08:00
|
|
|
assert bias is None
|
|
|
|
# x_new: (N, C, L) -> (N, L, C)
|
|
|
|
out = mx.conv1d(
|
|
|
|
x_new.transpose(0, 2, 1),
|
|
|
|
mx.expand_dims(weight, axis=2),
|
|
|
|
padding=0,
|
|
|
|
groups=dim,
|
|
|
|
).transpose(0, 2, 1)[:, :, -seqlen:]
|
|
|
|
if unsqueeze:
|
|
|
|
out = out.squeeze(-1)
|
|
|
|
return (out if activation is None else nn.silu(out)).astype(dtype_in), conv_state
|
|
|
|
|
|
|
|
|
|
|
|
def _causal_conv1d_update(conv_state: mx.array, weight: mx.array, xBC: mx.array) -> tuple[mx.array, mx.array]:
|
2025-02-13 18:54:07 +08:00
|
|
|
dtype = conv_state.dtype
|
|
|
|
xBC = xBC.astype(dtype)
|
|
|
|
weight = weight.astype(dtype)
|
|
|
|
|
|
|
|
x, conv_state = causal_conv1d_update(
|
|
|
|
x=xBC,
|
|
|
|
conv_state=conv_state,
|
2025-02-14 21:38:13 +08:00
|
|
|
weight=weight[:, :, 0],
|
2025-02-13 18:54:07 +08:00
|
|
|
activation="silu",
|
|
|
|
)
|
|
|
|
return x, conv_state
|
|
|
|
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
# Based on: https://github.com/Dao-AILab/causal-conv1d/blob/82867a9d2e6907cc0f637ac6aff318f696838548/causal_conv1d/causal_conv1d_interface.py#L206
|
2025-02-13 18:54:07 +08:00
|
|
|
def causal_conv1d(x, weight, bias=None, activation=None):
|
|
|
|
"""
|
|
|
|
MLX implementation of a causal depthwise 1D convolution.
|
|
|
|
Args:
|
|
|
|
x (mx.array): Input tensor of shape (batch, channels, seq_len).
|
|
|
|
weight (mx.array): Convolution filters of shape (channels, kernel_width).
|
|
|
|
Each channel has its own filter (depthwise conv).
|
|
|
|
bias (mx.array, optional): Bias for each channel of shape (channels,).
|
|
|
|
activation (str, optional): Activation to apply ("silu" or "swish" supported).
|
|
|
|
Returns:
|
|
|
|
mx.array: Output tensor of shape (batch, channels, seq_len).
|
|
|
|
"""
|
|
|
|
x = mx.array(x) if not isinstance(x, mx.array) else x
|
|
|
|
weight = mx.array(weight) if not isinstance(weight, mx.array) else weight
|
|
|
|
if bias is not None:
|
|
|
|
bias = mx.array(bias) if not isinstance(bias, mx.array) else bias
|
|
|
|
|
|
|
|
batch, channels, seq_len = x.shape
|
|
|
|
_, kernel_width = weight.shape # weight shape: (channels, kernel_width)
|
|
|
|
|
|
|
|
# Reshape weight for depthwise conv: (out_channels, in_channels/groups, kernel_width)
|
|
|
|
# Here out_channels = channels, in_channels/groups = 1 (depthwise conv per channel)
|
|
|
|
w = weight.reshape((channels, 1, kernel_width))
|
|
|
|
|
|
|
|
# Pad input on the left with (kernel_width-1) zeros for causal convolution
|
|
|
|
if kernel_width > 1:
|
|
|
|
pad_shape = (batch, channels, kernel_width - 1)
|
|
|
|
pad_zeros = mx.zeros(pad_shape, dtype=x.dtype)
|
|
|
|
x_padded = mx.concatenate([pad_zeros, x], axis=2) # concat along time axis
|
|
|
|
else:
|
|
|
|
x_padded = x
|
|
|
|
|
|
|
|
# Perform depthwise convolution. Padding is already applied manually, so use padding=0 in conv1d.
|
|
|
|
y = mx.conv1d(x_padded, w, stride=1, padding=0, groups=channels)
|
|
|
|
# After convolution, y shape = (batch, channels, seq_len) because:
|
|
|
|
# input length = seq_len + kernel_width - 1, no padding in conv, so output length = seq_len.
|
|
|
|
|
|
|
|
# Add bias if provided (bias shape (channels,) broadcasts to (batch, channels, seq_len))
|
|
|
|
if bias is not None:
|
|
|
|
y = y + bias.reshape((1, channels, 1))
|
|
|
|
|
|
|
|
# Apply activation if specified
|
|
|
|
if activation in ("silu", "swish"):
|
|
|
|
# SiLU (swish) activation: y * sigmoid(y)
|
|
|
|
y = y * mx.sigmoid(y)
|
|
|
|
elif activation is not None:
|
|
|
|
raise ValueError(f"Unsupported activation: {activation}")
|
|
|
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class Mamba(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs, layer_idx: int) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.layer_idx = layer_idx
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.d_state = config.mamba_d_state
|
|
|
|
self.d_conv = config.mamba_d_conv
|
|
|
|
self.chunk_size = config.mamba_chunk_size
|
|
|
|
self.num_heads = config.mamba_num_heads
|
|
|
|
# TODO add mamba_hidden_size_per_head config (?)
|
|
|
|
self.hidden_size_per_head = config.hidden_size_per_head
|
|
|
|
|
|
|
|
self.intermediate_size = self.num_heads * self.hidden_size_per_head
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
self.in_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False)
|
2025-02-13 18:54:07 +08:00
|
|
|
self.conv1d = nn.Conv1d(
|
|
|
|
in_channels=self.intermediate_size,
|
|
|
|
out_channels=self.intermediate_size,
|
|
|
|
bias=False, # TODO the original implementation uses bias
|
|
|
|
kernel_size=self.d_conv,
|
|
|
|
groups=self.intermediate_size,
|
|
|
|
padding=0,
|
|
|
|
)
|
|
|
|
self.dt_dim = max(64, self.hidden_size // 16)
|
|
|
|
# Notes:
|
|
|
|
# Mamba2 removes this linear projection for simplicity (Figure 6 in the paper),
|
|
|
|
# but it may degrade the ability of content-length extrapolation.
|
|
|
|
self.bcdt_proj = nn.Linear(
|
|
|
|
self.intermediate_size,
|
|
|
|
self.dt_dim + 2 * self.d_state,
|
|
|
|
bias=False,
|
|
|
|
)
|
|
|
|
self.dt_proj = nn.Linear(self.dt_dim, self.num_heads, bias=False)
|
|
|
|
|
|
|
|
self.dt_bias = get_initial_dt_bias(self.num_heads)
|
|
|
|
self.A_log = get_initial_A(self.num_heads)
|
2025-02-14 00:51:06 +08:00
|
|
|
self.D = mx.ones(self.num_heads, dtype=mx.float32)
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
# TODO norm weight before gating like Mamba2
|
|
|
|
self.dt_norm_weight = mx.ones(self.dt_dim)
|
|
|
|
self.B_norm_weight = mx.ones(self.d_state)
|
|
|
|
self.C_norm_weight = mx.ones(self.d_state)
|
|
|
|
|
|
|
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
|
|
|
|
|
|
def _no_weight_decay_param_names(self) -> set[str]:
|
|
|
|
return set(["D", "dt_bias", "A_log"])
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
hidden_states: mx.array,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
past_states: Optional[PlamoCache] = None,
|
|
|
|
) -> tuple[mx.array, Optional[PlamoCache]]:
|
|
|
|
bsize, length, _ = hidden_states.shape
|
|
|
|
is_update = length == 1 and past_states is not None
|
|
|
|
|
|
|
|
bool_mask: mx.array | None = None
|
|
|
|
seq_idx: mx.array | None = None
|
|
|
|
if attention_mask is not None:
|
|
|
|
if len(attention_mask.shape) == 2:
|
|
|
|
attention_mask = mx.broadcast_to(
|
|
|
|
attention_mask[None, None],
|
|
|
|
(bsize, 1, attention_mask.shape[0], attention_mask.shape[1]),
|
|
|
|
)
|
|
|
|
assert len(attention_mask.shape) == 4
|
|
|
|
|
|
|
|
if past_states is None:
|
|
|
|
# TODO: support seq_idx with cache
|
|
|
|
bool_mask_4d = mx.array(attention_mask == 0, dtype=mx.bool_) # type: ignore
|
|
|
|
is_first_token = _is_first_token(bool_mask_4d)[:, 0, :]
|
|
|
|
seq_idx = mx.cumsum(is_first_token, axis=-1) - 1
|
|
|
|
seq_idx = seq_idx.astype(mx.int32)
|
|
|
|
|
|
|
|
# `generate` function creates attention mask that contains past tokens,
|
|
|
|
# but mamba does not use them
|
|
|
|
attention_mask = attention_mask[:, 0, -length:, -length:]
|
|
|
|
bool_mask = mx.array(mx.diagonal(attention_mask, axis1=-2, axis2=-1) == 0)
|
|
|
|
|
|
|
|
conv_state: mx.array | None
|
|
|
|
ssm_state: mx.array | None
|
|
|
|
if past_states is None:
|
|
|
|
conv_state = None
|
|
|
|
ssm_state = None
|
|
|
|
elif past_states[self.layer_idx] is None:
|
|
|
|
conv_state = mx.zeros(
|
|
|
|
(bsize, self.intermediate_size, self.d_conv - 1),
|
|
|
|
dtype=hidden_states.dtype,
|
|
|
|
)
|
|
|
|
ssm_state = mx.zeros(
|
|
|
|
(bsize, self.num_heads, self.hidden_size_per_head, self.d_state),
|
|
|
|
dtype=mx.float32,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
c = past_states[self.layer_idx]
|
|
|
|
assert isinstance(c, PlamoMambaCache)
|
|
|
|
conv_state = c.conv_state
|
|
|
|
ssm_state = c.ssm_state
|
|
|
|
|
|
|
|
zx = self.in_proj(hidden_states)
|
2025-02-14 21:38:13 +08:00
|
|
|
zx = zx.reshape(bsize, length, self.num_heads, -1)
|
2025-02-13 18:54:07 +08:00
|
|
|
# z: (bsize, length, num_heads, hidden_size_per_head)
|
|
|
|
# x: (bsize, length, num_heads, hidden_size_per_head)
|
|
|
|
z, x = mx.split(
|
|
|
|
zx,
|
|
|
|
[
|
|
|
|
self.hidden_size_per_head,
|
|
|
|
],
|
|
|
|
axis=-1,
|
|
|
|
)
|
|
|
|
|
|
|
|
# conv
|
2025-02-14 00:51:06 +08:00
|
|
|
x = x.reshape(bsize, length, -1).transpose(0, 2, 1) # (bsize, intermediate_size, length)
|
2025-02-13 18:54:07 +08:00
|
|
|
if bool_mask is not None:
|
|
|
|
x = mx.where(bool_mask[:, None, :], x, 0.0)
|
|
|
|
if is_update:
|
|
|
|
assert conv_state is not None
|
|
|
|
x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x)
|
|
|
|
else:
|
2025-02-14 00:51:06 +08:00
|
|
|
x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx)
|
2025-02-14 21:38:13 +08:00
|
|
|
x = x.astype(hidden_states.dtype)
|
2025-02-13 18:54:07 +08:00
|
|
|
x = x.transpose(0, 2, 1) # (bsize, length, intermediate_size)
|
|
|
|
x = x.reshape(bsize, length, -1)
|
|
|
|
# x: (bsize, length, num_heads, hidden_size_per_head)
|
|
|
|
# B: (bsize, length, 1, d_state)
|
|
|
|
# C: (bsize, length, 1, d_state)
|
|
|
|
# dt: (bsize, length, dt_dim)
|
2025-02-14 21:38:13 +08:00
|
|
|
BCdt = self.bcdt_proj(x)
|
2025-02-13 18:54:07 +08:00
|
|
|
x = x.reshape(bsize, length, self.num_heads, -1)
|
|
|
|
B, C, dt = mx.split(BCdt, [self.d_state, self.d_state * 2], axis=-1)
|
|
|
|
B = B[:, :, None, :]
|
|
|
|
C = C[:, :, None, :]
|
|
|
|
|
|
|
|
A = -mx.exp(self.A_log.astype(mx.float32)) # (num_heads,)
|
2025-02-14 00:51:06 +08:00
|
|
|
dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :]
|
|
|
|
B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :]
|
|
|
|
C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :]
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
# (bsize, length, num_heads, 1)
|
|
|
|
dt = self.dt_proj(dt)[..., None]
|
|
|
|
|
|
|
|
# TODO it may not be required
|
|
|
|
B = mx.broadcast_to(B, (B.shape[0], B.shape[1], self.num_heads, B.shape[3]))
|
|
|
|
C = mx.broadcast_to(C, (C.shape[0], C.shape[1], self.num_heads, C.shape[3]))
|
|
|
|
|
|
|
|
if bool_mask is not None:
|
|
|
|
"""
|
|
|
|
state will be updates by following:
|
|
|
|
```
|
|
|
|
dt = softplus(dt)
|
|
|
|
dA = exp(dt * A)
|
|
|
|
state_next = state * dA + dB * x
|
|
|
|
```
|
|
|
|
To avoid updating state, we set dt to -inf and x to 0
|
|
|
|
because `softplus(-inf) = 0` and `exp(0) = 1`
|
|
|
|
"""
|
|
|
|
dt = mx.where(bool_mask[:, :, None, None], dt, float("-inf"))
|
|
|
|
x = mx.where(bool_mask[:, :, None, None], x, 0.0)
|
|
|
|
|
|
|
|
# ssm
|
|
|
|
if is_update:
|
|
|
|
assert ssm_state is not None
|
|
|
|
out, ssm_state = ssd_update_state(
|
|
|
|
ssm_state,
|
|
|
|
x[:, 0],
|
|
|
|
dt[:, 0].reshape(bsize, -1),
|
|
|
|
A,
|
|
|
|
B[:, 0],
|
|
|
|
C[:, 0],
|
|
|
|
D=self.D,
|
|
|
|
z=z[:, 0],
|
|
|
|
dt_bias=self.dt_bias,
|
|
|
|
dt_softplus=True,
|
|
|
|
)
|
|
|
|
else:
|
2025-02-14 21:38:13 +08:00
|
|
|
tmp = ssd_chunk_scan_combined(
|
2025-02-13 18:54:07 +08:00
|
|
|
x,
|
|
|
|
dt.reshape(bsize, length, -1),
|
|
|
|
A,
|
|
|
|
B,
|
|
|
|
C,
|
|
|
|
self.chunk_size,
|
|
|
|
D=self.D,
|
|
|
|
z=z,
|
|
|
|
dt_bias=self.dt_bias,
|
|
|
|
dt_softplus=True,
|
2025-02-14 21:38:13 +08:00
|
|
|
return_final_states=past_states is not None,
|
2025-02-13 18:54:07 +08:00
|
|
|
seq_idx=seq_idx,
|
|
|
|
ssm_state=ssm_state,
|
|
|
|
)
|
2025-02-14 21:38:13 +08:00
|
|
|
if past_states is not None:
|
|
|
|
out, ssm_state = tmp
|
|
|
|
else:
|
|
|
|
assert isinstance(tmp, mx.array)
|
|
|
|
out = tmp
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
y = self.out_proj(out.reshape(bsize, length, -1))
|
|
|
|
|
|
|
|
if past_states is not None:
|
|
|
|
assert ssm_state is not None
|
|
|
|
assert conv_state is not None
|
|
|
|
past_states.update_mamba(conv_state, ssm_state, self.layer_idx)
|
|
|
|
|
|
|
|
return y, past_states
|
|
|
|
|
|
|
|
|
2025-02-14 21:38:13 +08:00
|
|
|
def swa_mask(q_len: int, kv_len: int, window_size: int) -> mx.array:
|
|
|
|
max_len = max(q_len, kv_len)
|
|
|
|
mask = mx.tril(
|
|
|
|
mx.triu(mx.ones((max_len, max_len), dtype=mx.bool_), k=-window_size), # type: ignore
|
|
|
|
k=window_size,
|
|
|
|
)
|
|
|
|
return mask[-q_len:, -kv_len:]
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs, layer_idx: int) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.layer_idx = layer_idx
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
head_dim = config.hidden_size_per_head
|
|
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
|
|
self.scale = head_dim**-0.5
|
|
|
|
|
|
|
|
self.q_num_heads = config.num_attention_heads
|
|
|
|
self.qk_dim = self.v_dim = head_dim
|
|
|
|
self.k_num_heads = self.v_num_heads = config.num_key_value_heads
|
|
|
|
assert self.q_num_heads % self.k_num_heads == 0
|
|
|
|
self.n_group = self.q_num_heads // self.k_num_heads
|
|
|
|
|
|
|
|
self.q_proj_dim = self.q_num_heads * self.qk_dim
|
|
|
|
self.k_proj_dim = self.k_num_heads * self.qk_dim
|
|
|
|
self.v_proj_dim = self.k_num_heads * self.v_dim
|
|
|
|
self.qkv_proj = nn.Linear(
|
|
|
|
self.hidden_size,
|
|
|
|
self.q_proj_dim + self.k_proj_dim + self.v_proj_dim,
|
|
|
|
bias=False,
|
|
|
|
)
|
|
|
|
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False)
|
|
|
|
|
|
|
|
self.q_weight = mx.ones((self.q_num_heads, self.qk_dim))
|
|
|
|
self.k_weight = mx.ones((self.k_num_heads, self.qk_dim))
|
|
|
|
|
|
|
|
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
hidden_states: mx.array,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
past_states: Optional[PlamoCache] = None,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
) -> tuple[mx.array, Optional[mx.array], Optional[PlamoCache]]:
|
|
|
|
bsz, q_len, _ = hidden_states.shape
|
|
|
|
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
|
|
query_states, key_states, value_states = mx.split(
|
|
|
|
qkv, [self.q_proj_dim, self.q_proj_dim + self.k_proj_dim], axis=-1
|
|
|
|
)
|
|
|
|
query_states = query_states.reshape(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(0, 2, 1, 3)
|
|
|
|
key_states = key_states.reshape(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(0, 2, 1, 3)
|
|
|
|
value_states = value_states.reshape(bsz, q_len, self.v_num_heads, self.v_dim).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
attn_dtype = query_states.dtype
|
|
|
|
|
|
|
|
query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None]
|
|
|
|
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None]
|
|
|
|
|
|
|
|
if past_states is not None:
|
|
|
|
# reuse k, v, self_attention
|
|
|
|
key_states_new = key_states
|
|
|
|
value_states_new = value_states
|
|
|
|
key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) # type: ignore
|
|
|
|
past_states.update_attention(key_states_new, value_states_new, self.layer_idx)
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
|
|
position_ids = mx.arange(kv_seq_len, dtype=mx.int64)[None]
|
|
|
|
q_position_ids = position_ids[:, -query_states.shape[2] :]
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids)
|
|
|
|
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
|
|
|
|
# [bsz, nh, t, hd]
|
|
|
|
|
|
|
|
# expand shared kv
|
|
|
|
assert self.k_num_heads == self.v_num_heads
|
|
|
|
key_states = mx.tile(key_states, (1, self.n_group, 1, 1))
|
|
|
|
value_states = mx.tile(value_states, (1, self.n_group, 1, 1))
|
|
|
|
|
|
|
|
full_attn = self.layer_idx in self.config.full_attention_idx
|
|
|
|
|
|
|
|
query_states = query_states.astype(attn_dtype)
|
|
|
|
key_states = key_states.astype(attn_dtype)
|
|
|
|
value_states = value_states.astype(attn_dtype)
|
|
|
|
if attention_mask is not None and attention_mask.dtype != bool:
|
|
|
|
attention_mask = attention_mask.astype(attn_dtype)
|
|
|
|
if attention_mask is None:
|
|
|
|
if not full_attn:
|
|
|
|
assert key_states.shape[2] <= self.config.attention_window_size + 1
|
|
|
|
mask = create_attention_mask(hidden_states)
|
|
|
|
attn_output = mx.fast.scaled_dot_product_attention(
|
|
|
|
query_states,
|
|
|
|
key_states,
|
|
|
|
value_states,
|
|
|
|
scale=self.scale,
|
|
|
|
mask=mask,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
if attention_mask.dtype == bool:
|
|
|
|
attention_mask = mx.where(attention_mask, mx.array(0.0, dtype=mx.float16), float("-inf"))
|
|
|
|
if len(attention_mask.shape) == 2:
|
|
|
|
attention_mask = attention_mask[None, None]
|
|
|
|
assert len(attention_mask.shape) == 4
|
|
|
|
|
|
|
|
if not full_attn:
|
|
|
|
m_swa = swa_mask(
|
|
|
|
query_states.shape[2],
|
|
|
|
key_states.shape[2],
|
|
|
|
self.config.attention_window_size,
|
|
|
|
)
|
|
|
|
# `generate` function creates attention mask that does not consider sliding window
|
|
|
|
m_swa = m_swa[None, None]
|
|
|
|
attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :]
|
|
|
|
attention_mask = mx.where(m_swa, attention_mask, float("-inf"))
|
|
|
|
|
|
|
|
# like AttentionMaskConverter._unmask_unattended in huggingface.transfoermers,
|
|
|
|
# we need to attend to all tokens in masked rows for `scaled_dot_product_attention`
|
|
|
|
bool_mask = mx.logical_not(mx.isneginf(attention_mask))
|
|
|
|
valid_tokens = mx.sum(bool_mask, axis=-1).astype(mx.bool_) # type: ignore # (..., q_len)
|
|
|
|
attention_mask = mx.where(valid_tokens[..., None], attention_mask, float(0.0))
|
|
|
|
attn_output = mx.fast.scaled_dot_product_attention(
|
|
|
|
query_states,
|
|
|
|
key_states,
|
|
|
|
value_states,
|
|
|
|
scale=self.scale,
|
|
|
|
mask=attention_mask,
|
|
|
|
)
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
|
if not output_attentions:
|
|
|
|
attn_weights = None
|
|
|
|
|
|
|
|
return attn_output, attn_weights, past_states
|
|
|
|
|
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.intermediate_size = config.intermediate_size
|
2025-02-14 00:51:06 +08:00
|
|
|
self.gate_up_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
2025-02-13 18:54:07 +08:00
|
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
|
|
h = self.gate_up_proj(x)
|
|
|
|
h = _swiglu(h)
|
|
|
|
return self.down_proj(h) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
class PlamoDecoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs, is_mamba: bool, layer_idx: int) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.is_mamba = is_mamba
|
|
|
|
self.mixer: nn.Module
|
|
|
|
if is_mamba:
|
|
|
|
self.mixer = Mamba(config, layer_idx)
|
|
|
|
else:
|
|
|
|
self.mixer = Attention(config, layer_idx)
|
|
|
|
self.mlp = MLP(config)
|
|
|
|
"""
|
|
|
|
Notes: The model performance was degraded when setting all offsets to 1.
|
|
|
|
"""
|
2025-02-14 00:51:06 +08:00
|
|
|
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
|
|
|
|
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5)
|
|
|
|
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
|
|
|
|
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5))
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
hidden_states: mx.array,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
past_state: Optional[PlamoCache] = None,
|
|
|
|
output_attentions: Optional[bool] = False,
|
|
|
|
) -> tuple[Any, ...]:
|
|
|
|
# from LlamaDecoder
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.pre_mixer_norm(hidden_states)
|
|
|
|
|
|
|
|
# Self Attention
|
|
|
|
if self.is_mamba:
|
|
|
|
hidden_states_sa, present_key_value = self.mixer(
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_states=past_state,
|
|
|
|
)
|
|
|
|
self_attn_weights = None
|
|
|
|
else:
|
|
|
|
hidden_states_sa, self_attn_weights, present_key_value = self.mixer(
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_states=past_state,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states_sa = self.post_mixer_norm(hidden_states_sa)
|
|
|
|
hidden_states = residual + hidden_states_sa
|
|
|
|
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.pre_mlp_norm(hidden_states)
|
|
|
|
|
|
|
|
# Fully Connected
|
|
|
|
hidden_states_mlp = self.mlp(hidden_states)
|
|
|
|
|
|
|
|
# Residual
|
|
|
|
hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp)
|
|
|
|
hidden_states = residual + hidden_states_mlp
|
|
|
|
|
|
|
|
outputs: Any = (hidden_states,)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
outputs += (self_attn_weights,)
|
|
|
|
|
|
|
|
return outputs # type: ignore
|
|
|
|
|
|
|
|
|
2025-02-14 21:38:13 +08:00
|
|
|
def is_mamba(config: ModelArgs, i: int) -> bool:
|
|
|
|
if not config.mamba_enabled:
|
|
|
|
return False
|
|
|
|
assert config.mamba_step > 1
|
|
|
|
assert i < config.num_hidden_layers
|
|
|
|
|
|
|
|
if config.num_hidden_layers <= (config.mamba_step // 2):
|
|
|
|
# use attention in last layer
|
|
|
|
return i != config.num_hidden_layers - 1
|
|
|
|
return (i % config.mamba_step) != (config.mamba_step // 2)
|
|
|
|
|
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
class PlamoDecoder(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.layers = [
|
|
|
|
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i)
|
|
|
|
for i in range(config.num_hidden_layers)
|
|
|
|
]
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def __call__(self, x: DecoderInput) -> DecoderOutput:
|
2025-02-14 00:51:06 +08:00
|
|
|
all_hidden_states: Optional[tuple[mx.array, ...]] = () if x.output_hidden_states else None
|
|
|
|
all_self_attns: Optional[tuple[mx.array, ...]] = () if x.output_attentions else None
|
2025-02-13 18:54:07 +08:00
|
|
|
hidden_states = x.hidden_states
|
|
|
|
|
2025-02-14 20:11:30 +08:00
|
|
|
for decoder_layer in self.layers:
|
2025-02-13 18:54:07 +08:00
|
|
|
if x.output_hidden_states:
|
|
|
|
assert all_hidden_states is not None
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
if self.training and x.gradient_checkpointing:
|
|
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
|
|
decoder_layer.__call__,
|
|
|
|
hidden_states,
|
|
|
|
x.attention_mask,
|
|
|
|
x.past_states,
|
|
|
|
x.output_attentions,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
layer_outputs = decoder_layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=x.attention_mask,
|
|
|
|
past_state=x.past_states,
|
|
|
|
output_attentions=x.output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if x.output_attentions:
|
|
|
|
assert layer_outputs[1] is not None
|
|
|
|
assert all_self_attns is not None
|
|
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns)
|
|
|
|
|
|
|
|
|
|
|
|
class ModelOutput(OrderedDict):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
def __getitem__(self, k):
|
|
|
|
if isinstance(k, str):
|
|
|
|
inner_dict = dict(self.items())
|
|
|
|
return inner_dict[k]
|
|
|
|
else:
|
|
|
|
return self.to_tuple()[k]
|
|
|
|
|
|
|
|
def to_tuple(self) -> tuple[Any]:
|
|
|
|
"""
|
|
|
|
Convert self to a tuple containing all the attributes/keys that are not `None`.
|
|
|
|
"""
|
|
|
|
return tuple(self[k] for k in self.keys())
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModelOutputWithPast(ModelOutput):
|
|
|
|
"""
|
|
|
|
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
last_hidden_state (:obj:`mx.array` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
|
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
|
|
|
|
|
|
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape
|
|
|
|
:obj:`(batch_size, 1, hidden_size)` is output.
|
|
|
|
past_key_values (:obj:`list[mx.array]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
|
|
|
list of :obj:`mx.array` of length :obj:`config.n_layers`, with each tensor of shape
|
|
|
|
:obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`).
|
|
|
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
|
|
|
``past_key_values`` input) to speed up sequential decoding.
|
|
|
|
hidden_states (:obj:`tuple(mx.array)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
|
|
|
Tuple of :obj:`mx.array` (one for the output of the embeddings + one for the output of each layer)
|
|
|
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
|
|
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
|
|
attentions (:obj:`tuple(mx.array)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
|
|
|
Tuple of :obj:`mx.array` (one for each layer) of shape
|
|
|
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
|
|
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
|
|
heads.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.last_hidden_state: mx.array = kwargs.pop("last_hidden_state")
|
2025-02-14 00:51:06 +08:00
|
|
|
self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None)
|
|
|
|
self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None)
|
2025-02-13 18:54:07 +08:00
|
|
|
self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None)
|
|
|
|
|
|
|
|
|
|
|
|
class CausalLMOutputWithPast(ModelOutput):
|
|
|
|
"""
|
|
|
|
Base class for causal language model (or autoregressive) outputs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
loss (`mx.array` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
|
|
Language modeling loss (for next-token prediction).
|
|
|
|
logits (`mx.array` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
|
|
past_key_values (`tuple(tuple(mx.array))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
|
|
Tuple of `tuple(mx.array)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
|
|
hidden_states (`tuple(mx.array)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
|
|
Tuple of `mx.array` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
|
|
attentions (`tuple(mx.array)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
|
|
Tuple of `mx.array` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
|
|
sequence_length)`.
|
|
|
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
|
|
heads.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
self.loss: Optional[mx.array] = kwargs.pop("loss", None)
|
|
|
|
self.logits: mx.array | None = kwargs.pop("logits", None)
|
2025-02-14 00:51:06 +08:00
|
|
|
self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None)
|
|
|
|
self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None)
|
2025-02-13 18:54:07 +08:00
|
|
|
self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None)
|
|
|
|
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
class PlamoPreTrainedModel(nn.Module): # type: ignore
|
|
|
|
config_class = ModelArgs
|
|
|
|
_no_split_modules: list[str]
|
|
|
|
base_model_prefix = "model"
|
|
|
|
supports_gradient_checkpointing = True
|
|
|
|
_no_split_modules = ["PlamoDecoderLayer"]
|
|
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
|
|
|
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
|
|
|
|
def _init_weights(self, module: nn.Module) -> None:
|
|
|
|
std = 0.02
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape)
|
|
|
|
if module.bias is not None:
|
|
|
|
module.bias = mx.zeros_like(module.bias)
|
|
|
|
elif isinstance(module, nn.Embedding):
|
|
|
|
module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape)
|
|
|
|
if module.padding_idx is not None:
|
|
|
|
module.weight[module.padding_idx] = mx.zeros_like(module.weight[module.padding_idx])
|
|
|
|
|
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
class PlamoModel(PlamoPreTrainedModel):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__(config)
|
|
|
|
assert config.eval_attention_n_bit is None
|
|
|
|
assert config.eval_mlp_n_bit is None
|
|
|
|
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
self.layers = PlamoDecoder(config) # type: ignore
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
# self.post_init()
|
|
|
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding:
|
|
|
|
return self.embed_tokens
|
|
|
|
|
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
|
|
|
self.embed_tokens = value
|
|
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
|
|
|
def _prepare_decoder_attention_mask(
|
|
|
|
self,
|
|
|
|
attention_mask: mx.array,
|
|
|
|
input_shape: tuple[int, int],
|
|
|
|
inputs_embeds: Optional[mx.array],
|
|
|
|
past_key_values_length: int,
|
|
|
|
) -> Optional[mx.array]:
|
|
|
|
# create causal mask
|
|
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
|
|
combined_attention_mask: Optional[mx.array] = None
|
|
|
|
if input_shape[-1] > 1:
|
|
|
|
assert inputs_embeds is not None
|
|
|
|
combined_attention_mask = _make_causal_mask(
|
|
|
|
input_shape,
|
|
|
|
inputs_embeds.dtype,
|
|
|
|
past_key_values_length=past_key_values_length,
|
|
|
|
)
|
|
|
|
input_shape = (input_shape[0], combined_attention_mask.shape[2])
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
if attention_mask.ndim == 4:
|
|
|
|
# Custom 4D attention mask
|
|
|
|
expanded_attn_mask = attention_mask
|
|
|
|
else:
|
|
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
|
|
assert inputs_embeds is not None
|
2025-02-14 00:51:06 +08:00
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
2025-02-13 18:54:07 +08:00
|
|
|
combined_attention_mask = (
|
2025-02-14 00:51:06 +08:00
|
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
2025-02-13 18:54:07 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
return combined_attention_mask
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[mx.array] = None,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
position_ids: Optional[mx.array] = None,
|
|
|
|
past_key_values: Optional[PlamoCache] = None,
|
|
|
|
inputs_embeds: Optional[mx.array] = None,
|
|
|
|
image_features: Optional[mx.array] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[tuple, BaseModelOutputWithPast]:
|
|
|
|
assert input_ids is not None
|
2025-02-14 00:51:06 +08:00
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2025-02-13 18:54:07 +08:00
|
|
|
output_hidden_states = (
|
2025-02-14 00:51:06 +08:00
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
2025-02-13 18:54:07 +08:00
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
2025-02-14 00:51:06 +08:00
|
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
2025-02-13 18:54:07 +08:00
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
else:
|
2025-02-14 00:51:06 +08:00
|
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_key_values_length = past_key_values.get_seq_length()
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
|
|
|
|
if image_features is not None:
|
|
|
|
assert self.config.image_token_id is not None
|
|
|
|
image_embeds = self.image_proj(image_features)
|
|
|
|
assert image_embeds.shape == inputs_embeds.shape, (
|
|
|
|
image_embeds.shape,
|
|
|
|
inputs_embeds.shape,
|
|
|
|
)
|
|
|
|
mask = input_ids == self.config.image_token_id
|
|
|
|
inputs_embeds[mask] = image_embeds[mask]
|
|
|
|
|
|
|
|
# embed positions
|
|
|
|
require_attn_mask = False
|
|
|
|
if not self.training or past_key_values is not None:
|
|
|
|
require_attn_mask = True
|
|
|
|
if seq_length_with_past >= self.config.attention_window_size:
|
|
|
|
require_attn_mask = True
|
|
|
|
if require_attn_mask and attention_mask is None:
|
|
|
|
attention_mask = mx.ones(
|
|
|
|
(batch_size, seq_length_with_past),
|
2025-02-14 00:51:06 +08:00
|
|
|
dtype=mx.bool_, # type: ignore
|
2025-02-13 18:54:07 +08:00
|
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_mask = self._prepare_decoder_attention_mask(
|
|
|
|
attention_mask,
|
|
|
|
(batch_size, seq_length),
|
|
|
|
inputs_embeds,
|
|
|
|
past_key_values_length,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
if use_cache and past_key_values is None:
|
|
|
|
past_key_values = PlamoCache(self.config)
|
|
|
|
|
|
|
|
# decoder layers
|
|
|
|
out = self.layers(
|
|
|
|
DecoderInput(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask,
|
|
|
|
past_key_values,
|
|
|
|
output_hidden_states,
|
|
|
|
output_attentions,
|
|
|
|
self.gradient_checkpointing,
|
|
|
|
)
|
|
|
|
)
|
2025-02-14 21:38:13 +08:00
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
assert isinstance(out, DecoderOutput)
|
|
|
|
hidden_states = out.hidden_states
|
|
|
|
all_hidden_states = out.all_hidden_states
|
|
|
|
all_self_attns = out.all_self_attns
|
|
|
|
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
|
|
# add hidden states from the last decoder layer
|
|
|
|
if output_hidden_states:
|
|
|
|
assert all_hidden_states is not None
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
past_key_values,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attns,
|
|
|
|
]
|
|
|
|
if v is not None
|
|
|
|
)
|
|
|
|
return BaseModelOutputWithPast(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attns,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Model(PlamoPreTrainedModel):
|
|
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
|
|
|
|
# Without this, the model cannot be loaded into a meta device.
|
|
|
|
# Relevant code:
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L4376-L4381
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L356
|
|
|
|
# https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068
|
|
|
|
_supports_param_buffer_assignment = False
|
|
|
|
|
|
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
|
|
super().__init__(config)
|
|
|
|
self.config = config
|
2025-02-23 13:43:14 +08:00
|
|
|
self.model_type = config.model_type
|
2025-02-13 18:54:07 +08:00
|
|
|
self.model = PlamoModel(config)
|
|
|
|
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
vocab_size = ((self.vocab_size + 15) // 16) * 16
|
|
|
|
|
|
|
|
if not config.tie_word_embeddings:
|
2025-02-14 00:51:06 +08:00
|
|
|
self.lm_head: nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False)
|
2025-02-14 22:24:45 +08:00
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
# Initialize weights and apply final processing
|
|
|
|
# self.post_init()
|
|
|
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding:
|
|
|
|
return self.model.embed_tokens
|
|
|
|
|
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
|
|
|
self.model.embed_tokens = value
|
|
|
|
|
|
|
|
def get_output_embeddings(self) -> nn.Module:
|
|
|
|
return self.lm_head
|
|
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
|
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
|
|
def set_decoder(self, decoder: PlamoModel) -> None:
|
|
|
|
self.model = decoder
|
|
|
|
|
|
|
|
def get_decoder(self) -> PlamoModel:
|
|
|
|
return self.model
|
2025-02-13 19:02:38 +08:00
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
def sanitize(self, weights: dict[Any, Any]) -> dict[Any, Any]:
|
|
|
|
for k, v in weights.items():
|
|
|
|
if "conv1d.weight" in k and v.shape[-1] != 1:
|
|
|
|
weights[k] = v.moveaxis(2, 1)
|
|
|
|
return weights
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
def make_cache(self) -> PlamoCache:
|
|
|
|
return PlamoCache(self.config)
|
|
|
|
|
2025-02-13 18:54:07 +08:00
|
|
|
def __call__(self, inputs: mx.array, cache: PlamoCache | None = None) -> mx.array:
|
2025-02-14 20:11:30 +08:00
|
|
|
model_inputs = self.prepare_inputs_for_generation(
|
2025-02-13 18:54:07 +08:00
|
|
|
input_ids=inputs,
|
2025-02-14 20:11:30 +08:00
|
|
|
past_key_values=cache,
|
2025-02-13 18:54:07 +08:00
|
|
|
use_cache=self.config.use_cache,
|
|
|
|
)
|
2025-02-23 13:43:14 +08:00
|
|
|
model_inputs["input_ids"] = inputs
|
2025-02-14 20:11:30 +08:00
|
|
|
output = self.forward(**model_inputs)
|
2025-02-13 18:54:07 +08:00
|
|
|
if not isinstance(output, CausalLMOutputWithPast):
|
|
|
|
raise ValueError(
|
|
|
|
f"Unexpected output type for causal language model: {type(output)} != CausalLMOutputWithPast"
|
|
|
|
)
|
|
|
|
if output.logits is not None:
|
|
|
|
return output.logits
|
|
|
|
else:
|
|
|
|
raise ValueError("The model did not return any logits.")
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[mx.array] = None,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
position_ids: Optional[mx.array] = None,
|
|
|
|
past_key_values: Optional[PlamoCache] = None,
|
|
|
|
inputs_embeds: Optional[mx.array] = None,
|
|
|
|
image_features: Optional[mx.array] = None,
|
|
|
|
labels: Optional[mx.array] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[tuple[Any, ...], CausalLMOutputWithPast]:
|
|
|
|
r"""
|
|
|
|
Args:
|
|
|
|
labels (`mx.array` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
|
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
|
|
|
```"""
|
|
|
|
assert input_ids is not None
|
|
|
|
|
2025-02-14 00:51:06 +08:00
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2025-02-13 18:54:07 +08:00
|
|
|
output_hidden_states = (
|
2025-02-14 00:51:06 +08:00
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
2025-02-13 18:54:07 +08:00
|
|
|
)
|
2025-02-14 00:51:06 +08:00
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2025-02-13 18:54:07 +08:00
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
|
|
outputs = self.model(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
image_features=image_features,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
elif isinstance(outputs, BaseModelOutputWithPast):
|
|
|
|
hidden_states = outputs.last_hidden_state
|
|
|
|
|
|
|
|
if self.config.tie_word_embeddings:
|
|
|
|
logits = self.model.embed_tokens.as_linear(hidden_states)
|
|
|
|
else:
|
|
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
|
|
|
|
logits = logits[..., : self.vocab_size]
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = logits[..., :-1, :]
|
|
|
|
shift_labels = labels[..., 1:]
|
|
|
|
# Flatten the tokens
|
|
|
|
loss_fct = nn.losses.cross_entropy
|
|
|
|
shift_logits = shift_logits.reshape((-1, self.config.vocab_size))
|
|
|
|
shift_labels = shift_labels.reshape((-1,))
|
|
|
|
# Enable model parallelism
|
|
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + outputs[1:]
|
|
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
|
|
|
|
if not isinstance(outputs, BaseModelOutputWithPast):
|
|
|
|
raise ValueError(
|
|
|
|
f"Unexpected output type for causal language model: {type(outputs)} != BaseModelOutputWithPast"
|
|
|
|
)
|
|
|
|
return CausalLMOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
|
self,
|
|
|
|
input_ids: mx.array,
|
|
|
|
past_key_values: Optional[PlamoCache] = None,
|
|
|
|
attention_mask: Optional[mx.array] = None,
|
|
|
|
inputs_embeds: Optional[mx.array] = None,
|
|
|
|
image_features: Optional[mx.array] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> dict[str, Any]:
|
|
|
|
if past_key_values:
|
|
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
if image_features is not None:
|
|
|
|
image_features = image_features[:, -1:, :]
|
|
|
|
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
# create position_ids on the fly for batch generation
|
|
|
|
position_ids = attention_mask.astype(mx.int64).cumsum(-1) - 1
|
2025-02-23 13:43:14 +08:00
|
|
|
position_ids = mx.where(attention_mask == 0, 1, position_ids)
|
2025-02-13 18:54:07 +08:00
|
|
|
if past_key_values:
|
|
|
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
|
|
model_inputs: dict[str, Any] = {"inputs_embeds": inputs_embeds}
|
|
|
|
else:
|
|
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
|
|
|
|
model_inputs.update(
|
|
|
|
{
|
|
|
|
"position_ids": position_ids,
|
|
|
|
"past_key_values": past_key_values,
|
|
|
|
"use_cache": kwargs.get("use_cache"),
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
"image_features": image_features,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _reorder_cache(past_key_values: PlamoCache, beam_idx: mx.array) -> PlamoCache:
|
|
|
|
past_key_values.reorder_cache(beam_idx)
|
|
|
|
return past_key_values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
2025-02-22 18:55:42 +08:00
|
|
|
return self.model.layers.layers
|