2023-12-20 05:06:19 +08:00
|
|
|
|
import argparse
|
|
|
|
|
import json
|
2023-12-21 02:22:25 +08:00
|
|
|
|
from dataclasses import dataclass
|
2023-12-22 04:59:37 +08:00
|
|
|
|
from pathlib import Path
|
2023-12-21 02:22:25 +08:00
|
|
|
|
|
2023-12-20 05:06:19 +08:00
|
|
|
|
import mlx.core as mx
|
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
from mlx.utils import tree_unflatten
|
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
|
class ModelArgs:
|
|
|
|
|
hidden_size: int = 2048
|
|
|
|
|
num_attention_heads: int = 16
|
|
|
|
|
num_hidden_layers: int = 24
|
|
|
|
|
kv_channels: int = 128
|
|
|
|
|
max_position_embeddings: int = 8192
|
|
|
|
|
layer_norm_epsilon: float = 1e-6
|
|
|
|
|
intermediate_size: int = 11008
|
|
|
|
|
no_bias: bool = True
|
|
|
|
|
vocab_size: int = 151936
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
|
|
|
def __init__(self, dims: int, eps: float = 1e-5):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.weight = mx.ones((dims,))
|
|
|
|
|
self.eps = eps
|
|
|
|
|
|
|
|
|
|
def _norm(self, x):
|
|
|
|
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
|
|
|
return self.weight * output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
hidden_size = args.hidden_size
|
|
|
|
|
self.num_attention_heads = args.num_attention_heads
|
|
|
|
|
|
|
|
|
|
hidden_size_per_attention_head = hidden_size // self.num_attention_heads
|
|
|
|
|
|
|
|
|
|
self.rotary_emb = nn.RoPE(hidden_size_per_attention_head, traditional=False)
|
|
|
|
|
|
|
|
|
|
proj_size = args.kv_channels * self.num_attention_heads
|
|
|
|
|
|
|
|
|
|
self.c_attn = nn.Linear(hidden_size, proj_size * 3, bias=True)
|
|
|
|
|
self.c_proj = nn.Linear(hidden_size, proj_size, bias=not args.no_bias)
|
|
|
|
|
|
|
|
|
|
self.scale = hidden_size_per_attention_head**-0.5
|
|
|
|
|
|
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
|
|
|
qkv = self.c_attn(x)
|
|
|
|
|
|
|
|
|
|
q, k, v = mx.split(qkv, 3, axis=-1)
|
|
|
|
|
|
|
|
|
|
B, L, _ = q.shape
|
|
|
|
|
|
|
|
|
|
q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
v = v.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
|
k_cache, v_cache = cache
|
|
|
|
|
q = self.rotary_emb(q, offset=k_cache.shape[2])
|
|
|
|
|
k = self.rotary_emb(k, offset=k_cache.shape[2])
|
|
|
|
|
k = mx.concatenate([k_cache, k], axis=2)
|
|
|
|
|
v = mx.concatenate([v_cache, v], axis=2)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
q = self.rotary_emb(q)
|
|
|
|
|
k = self.rotary_emb(k)
|
|
|
|
|
|
|
|
|
|
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
|
|
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
|
scores = scores + mask
|
|
|
|
|
|
|
|
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
|
|
|
v_hat = (scores @ v).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
|
|
|
|
|
|
return self.c_proj(v_hat), (k, v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.w1 = nn.Linear(
|
|
|
|
|
args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias
|
|
|
|
|
)
|
|
|
|
|
self.w2 = nn.Linear(
|
|
|
|
|
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
|
|
|
|
)
|
|
|
|
|
self.c_proj = nn.Linear(
|
|
|
|
|
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
|
a1 = self.w1(x)
|
|
|
|
|
a2 = self.w2(x)
|
|
|
|
|
return self.c_proj(a1 * nn.silu(a2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.ln_1 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
|
self.attn = Attention(args)
|
|
|
|
|
self.ln_2 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
|
self.mlp = MLP(args)
|
|
|
|
|
|
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
|
|
|
residual = x
|
|
|
|
|
x = self.ln_1(x)
|
|
|
|
|
x, cache = self.attn(x, mask=mask, cache=cache)
|
|
|
|
|
residual = x + residual
|
|
|
|
|
x = self.ln_2(residual)
|
|
|
|
|
x = self.mlp(x)
|
|
|
|
|
x = x + residual
|
|
|
|
|
|
|
|
|
|
return x, cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Qwen(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.embed_dim = args.hidden_size
|
|
|
|
|
|
|
|
|
|
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
|
|
|
self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)]
|
|
|
|
|
self.ln_f = RMSNorm(self.embed_dim, eps=args.layer_norm_epsilon)
|
|
|
|
|
|
|
|
|
|
self.lm_head = nn.Linear(self.embed_dim, args.vocab_size, bias=False)
|
|
|
|
|
|
|
|
|
|
def __call__(self, inputs, mask=None, cache=None):
|
|
|
|
|
x = self.wte(inputs)
|
|
|
|
|
|
|
|
|
|
mask = None
|
|
|
|
|
T = x.shape[1]
|
|
|
|
|
if T > 1:
|
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
|
|
|
|
mask = mask.astype(x.dtype)
|
|
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
|
cache = [None] * len(self.h)
|
|
|
|
|
|
|
|
|
|
for e, layer in enumerate(self.h):
|
|
|
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
|
|
|
|
|
|
|
|
x = self.ln_f(x[:, T - 1 : T, :])
|
|
|
|
|
return self.lm_head(x), cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate(prompt: mx.array, model: Qwen, temp: 0.0):
|
|
|
|
|
def sample(logits):
|
|
|
|
|
if temp == 0:
|
|
|
|
|
return mx.argmax(logits, axis=-1)
|
|
|
|
|
else:
|
|
|
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
|
|
|
|
|
|
logits, cache = model(prompt)
|
|
|
|
|
y = sample(logits[:, -1, :])
|
|
|
|
|
yield y
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
logits, cache = model(y[:, None], cache=cache)
|
|
|
|
|
y = sample(logits.squeeze(1))
|
|
|
|
|
yield y
|
|
|
|
|
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
|
def load_model(model_path: str, tokenizer_path: str = "Qwen/Qwen-1_8B"):
|
2023-12-20 05:06:19 +08:00
|
|
|
|
model_args = ModelArgs()
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
|
model_path = Path(model_path)
|
|
|
|
|
with open(model_path / "config.json", "r") as f:
|
2023-12-20 05:06:19 +08:00
|
|
|
|
config = json.load(f)
|
|
|
|
|
model_args.vocab_size = config["vocab_size"]
|
|
|
|
|
model_args.hidden_size = config["hidden_size"]
|
|
|
|
|
model_args.num_attention_heads = config["num_attention_heads"]
|
|
|
|
|
model_args.num_hidden_layers = config["num_hidden_layers"]
|
|
|
|
|
model_args.kv_channels = config["kv_channels"]
|
|
|
|
|
model_args.max_position_embeddings = config["max_position_embeddings"]
|
|
|
|
|
model_args.layer_norm_epsilon = config["layer_norm_epsilon"]
|
|
|
|
|
model_args.intermediate_size = config["intermediate_size"]
|
|
|
|
|
model_args.no_bias = config["no_bias"]
|
|
|
|
|
|
|
|
|
|
model = Qwen(model_args)
|
2023-12-22 04:59:37 +08:00
|
|
|
|
weights = mx.load(str(model_path / "weights.npz"))
|
|
|
|
|
if quantization := config.get("quantization", False):
|
|
|
|
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
2023-12-20 05:06:19 +08:00
|
|
|
|
model.update(tree_unflatten(list(weights.items())))
|
2023-12-22 04:59:37 +08:00
|
|
|
|
|
2023-12-20 05:06:19 +08:00
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
tokenizer_path, trust_remote_code=True, eos_token="<|endoftext|>"
|
|
|
|
|
)
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
parser = argparse.ArgumentParser(description="Qwen inference script")
|
2023-12-22 04:59:37 +08:00
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--model-path",
|
|
|
|
|
type=str,
|
|
|
|
|
default="mlx_model",
|
|
|
|
|
help="The path to the model weights and config",
|
|
|
|
|
)
|
2023-12-20 05:06:19 +08:00
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--tokenizer",
|
|
|
|
|
help="The tokenizer to be used, defaults to Qwen/Qwen-1_8B",
|
|
|
|
|
default="Qwen/Qwen-1_8B",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--prompt",
|
|
|
|
|
help="The message to be processed by the model",
|
|
|
|
|
# The example from the official huggingface repo of Qwen
|
|
|
|
|
default="蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
2023-12-22 04:59:37 +08:00
|
|
|
|
"--max-tokens",
|
2023-12-20 05:06:19 +08:00
|
|
|
|
"-m",
|
|
|
|
|
type=int,
|
|
|
|
|
default=100,
|
|
|
|
|
help="Maximum number of tokens to generate",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--temp",
|
|
|
|
|
help="The sampling temperature.",
|
|
|
|
|
type=float,
|
|
|
|
|
default=0.0,
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
|
model, tokenizer = load_model(args.model_path, args.tokenizer)
|
2023-12-20 05:06:19 +08:00
|
|
|
|
|
|
|
|
|
prompt = tokenizer(
|
|
|
|
|
args.prompt,
|
|
|
|
|
return_tensors="np",
|
|
|
|
|
return_attention_mask=False,
|
|
|
|
|
)["input_ids"]
|
|
|
|
|
|
|
|
|
|
prompt = mx.array(prompt)
|
|
|
|
|
|
|
|
|
|
print(args.prompt, end="", flush=True)
|
|
|
|
|
|
|
|
|
|
tokens = []
|
|
|
|
|
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
|
|
|
|
tokens.append(token)
|
|
|
|
|
|
|
|
|
|
if (len(tokens) % 10) == 0:
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
|
eos_index = next(
|
|
|
|
|
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
|
|
|
|
None,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if eos_index is not None:
|
|
|
|
|
tokens = tokens[:eos_index]
|
|
|
|
|
|
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
|
print(s, end="", flush=True)
|
|
|
|
|
tokens = []
|
|
|
|
|
if eos_index is not None:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
|
print(s, flush=True)
|