mlx-examples/llms/mlx_lm/models/recurrent_gemma.py

519 lines
14 KiB
Python
Raw Normal View History

import math
from dataclasses import dataclass
from typing import List, Literal, Optional
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
attention_bias: bool
conv1d_width: int
hidden_size: int
intermediate_size: int
logits_soft_cap: float
num_attention_heads: int
num_hidden_layers: int
num_key_value_heads: int
rms_norm_eps: float
rope_theta: float
attention_window_size: int
vocab_size: int
embeddings_scale_by_sqrt_dim: bool = True
block_types: Optional[List[str]] = None
_block_types: Optional[List[str]] = None
def __post_init__(self):
# For some reason these have different names in 2B and 9B
if self.block_types is None:
self.block_types = self._block_types
def create_window_causal_mask(N: int, window_size: int):
inds = mx.arange(N)
linds = inds[:, None]
rinds = inds[None]
mask = (linds < rinds) | (linds > rinds + window_size)
return mask * -1e9
class RecurrentCache:
def __init__(self):
self._cache = (None, None)
def __getitem__(self, idx):
return self._cache[idx]
def update(self, conv_state, recurrent_state):
self._cache = (conv_state, recurrent_state)
class WindowKVCache:
def __init__(self, window_size):
self.keys = None
self.values = None
self.offset = 0
self.window_size = window_size
def update_and_fetch(self, keys, values):
# TODO consider using rotating buffer here
# especially for very long generations
def _update(x, v):
t = x.shape[2] - self.window_size
if t > 0:
x = x[..., t:, :]
return mx.concatenate([x, v], axis=2)
self.offset += keys.shape[2]
if self.keys is None:
self.keys = keys
self.values = values
else:
self.keys = _update(self.keys, keys)
self.values = _update(self.values, values)
return self.keys, self.values
class RMSNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def __call__(self, x):
return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
def rnn_scan(x, a, h0):
assert x.ndim == 3
assert a.shape == x.shape[-a.ndim :]
assert a.dtype == x.dtype
if x.shape[1] == 1:
# Using scan in sampling mode.
if h0 is None:
return x, x[:, 0]
else:
y = a * h0[:, None] + x
return y, y[:, -1]
else:
# Using scan in linear mode.
if h0 is not None:
h_t = h0
else:
B, _, D = x.shape
h_t = mx.zeros((B, D), dtype=x.dtype)
y = mx.zeros_like(x)
for t in range(x.shape[1]):
h_t = a[:, t] * h_t + x[:, t]
y[:, t] = h_t
return y, h_t
class Conv1d(nn.Module):
def __init__(
self,
channels: int,
kernel_size: int,
):
super().__init__()
self.weight = mx.zeros((kernel_size, channels))
self.bias = mx.zeros((channels,))
def __call__(self, x, cache=None):
w = self.weight.T[..., None]
kw, groups = self.weight.shape
if cache is not None:
l = []
# Pad the cache if needed
if cache.shape[1] < kw - 1:
l.append(
mx.zeros(
(x.shape[0], kw - 1 - cache.shape[1], groups), dtype=x.dtype
)
)
l.extend([cache, x])
x = mx.concatenate(l, axis=1)
y = (x * w.swapaxes(0, 2)).sum(axis=1, keepdims=True)
else:
y = mx.conv_general(x, w, padding=([kw - 1], [0]), groups=groups)
# The cache is always kw - 1
cache = x[:, max(x.shape[1] - kw + 1, 0) :, :]
y = y + self.bias
return y, cache
class RGLRU(nn.Module):
"""A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
def __init__(
self,
width: int,
num_heads: int,
):
super().__init__()
self.width = width
self.num_heads = num_heads
self.head_dim = self.width // self.num_heads
self.recurrent_param = mx.zeros((self.width,))
self.input_gate_weight = mx.zeros(
(self.num_heads, self.head_dim, self.head_dim),
)
self.input_gate_bias = mx.zeros((self.num_heads, self.head_dim))
self.recurrent_gate_weight = mx.zeros(
(self.num_heads, self.head_dim, self.head_dim),
)
self.recurrent_gate_bias = mx.zeros((self.num_heads, self.head_dim))
def __call__(
self,
x: mx.array,
cache=None,
):
B, L, _ = x.shape
def apply_block_linear(h, w, b):
h = h.reshape((B, L, self.num_heads, self.head_dim))
h = (h.swapaxes(1, 2) @ w).swapaxes(1, 2) + b
return mx.sigmoid(h.flatten(2, 3))
# Gates for x and a.
gate_x = apply_block_linear(x, self.input_gate_weight, self.input_gate_bias)
gate_a = apply_block_linear(
x, self.recurrent_gate_weight, self.recurrent_gate_bias
)
# Compute the parameter `A` of the recurrence.
log_a = -8.0 * gate_a * nn.softplus(self.recurrent_param)
a = mx.exp(log_a)
a_square = mx.exp(2 * log_a)
# Gate the input.
gated_x = x * gate_x
# Apply gamma normalization to the input.
multiplier = mx.sqrt(1 - a_square)
if cache is None:
multiplier[:, 0, :] = 1.0
normalized_x = gated_x * multiplier.astype(x.dtype)
y, last_h = rnn_scan(
x=normalized_x,
a=a,
h0=cache,
)
return y, last_h
class RecurrentBlock(nn.Module):
def __init__(
self,
width: int,
num_heads: int,
lru_width: int = None,
conv1d_temporal_width: int = 4,
):
super().__init__()
self.width = width
self.num_heads = num_heads
self.lru_width = lru_width or width
self.conv1d_temporal_width = conv1d_temporal_width
self.linear_y = nn.Linear(width, self.lru_width)
self.linear_x = nn.Linear(width, self.lru_width)
self.linear_out = nn.Linear(self.lru_width, width)
self.conv_1d = Conv1d(
channels=self.lru_width,
kernel_size=self.conv1d_temporal_width,
)
self.rg_lru = RGLRU(
width=self.lru_width,
num_heads=self.num_heads,
)
def __call__(
self,
x: mx.array,
cache=None,
mask=None,
):
# y branch.
y = self.linear_y(x)
y = nn.gelu_approx(y)
# x branch.
x = self.linear_x(x)
if cache is None:
conv_state, recurrent_state = (None, None)
else:
conv_state, recurrent_state = cache[0], cache[1]
x, conv_state = self.conv_1d(
x=x,
cache=conv_state,
)
x, recurrent_state = self.rg_lru(
x=x,
cache=recurrent_state,
)
if cache is not None:
cache.update(conv_state, recurrent_state)
x = x * y
x = self.linear_out(x)
return x
class LocalAttentionBlock(nn.Module):
def __init__(
self,
width: int,
num_heads: int,
window_size: int,
):
super().__init__()
self.width = width
self.num_heads = num_heads
self.window_size = window_size
self.scale = (width // num_heads) ** (-0.5)
self.head_dim = self.width // self.num_heads
self.q_proj = nn.Linear(self.width, self.width, bias=False)
self.k_proj = nn.Linear(self.width, self.head_dim, bias=False)
self.v_proj = nn.Linear(self.width, self.head_dim, bias=False)
self.o_proj = nn.Linear(self.width, self.width, bias=True)
self.rope = nn.RoPE(
self.head_dim // 2,
traditional=False,
)
def __call__(
self,
x: mx.array,
cache=None,
mask=None,
):
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, 1, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, 1, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLPBlock(nn.Module):
def __init__(self, width: int, expanded_width: int):
super().__init__()
self.up_proj = nn.Linear(width, expanded_width // 2)
self.gate_proj = nn.Linear(width, expanded_width // 2)
self.down_proj = nn.Linear(expanded_width // 2, width)
def __call__(self, x: mx.array):
gate = self.gate_proj(x)
x = self.up_proj(x)
return self.down_proj(nn.gelu_approx(gate) * x)
class ResidualBlock(nn.Module):
def __init__(
self,
width: int,
mlp_expanded_width: int,
num_heads: int,
attention_window_size: int,
temporal_block_type: str,
lru_width: Optional[int] = None,
conv1d_temporal_width: int = 4,
):
"""Initializes the residual block.
Args:
width: The width of the block.
mlp_expanded_width: The width of the expansion inside the MLP block.
num_heads: The number of heads for the Attention or the RG-LRU.
attention_window_size: The window size for the local attention block.
temporal_block_type: Either "recurrent" or "attention", specifying the
type of recurrent block to use.
lru_width: The width of the RG-LRU if different from `width`.
conv1d_temporal_width: The width of the temporal convolution.
"""
super().__init__()
self.width = width
self.mlp_expanded_width = mlp_expanded_width
self.num_heads = num_heads
self.attention_window_size = attention_window_size
self.temporal_block_type = temporal_block_type
self.lru_width = lru_width
self.conv1d_temporal_width = conv1d_temporal_width
self.temporal_pre_norm = RMSNorm(width)
if self.temporal_block_type == "recurrent":
self.temporal_block = RecurrentBlock(
width=self.width,
num_heads=self.num_heads,
lru_width=self.lru_width,
conv1d_temporal_width=self.conv1d_temporal_width,
)
else:
self.temporal_block = LocalAttentionBlock(
width=self.width,
num_heads=self.num_heads,
window_size=self.attention_window_size,
)
self.channel_pre_norm = RMSNorm(width)
self.mlp_block = MLPBlock(
width=self.width,
expanded_width=self.mlp_expanded_width,
)
def __call__(
self,
x: mx.array,
cache=None,
mask=None,
):
raw_x = x
inputs_normalized = self.temporal_pre_norm(raw_x)
x = self.temporal_block(inputs_normalized, cache=cache, mask=mask)
residual = x + raw_x
x = self.channel_pre_norm(residual)
x = self.mlp_block(x)
x = x + residual
return x
class Griffin(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(
config.vocab_size,
config.hidden_size,
)
self.scale_by_sqrt_dim = config.embeddings_scale_by_sqrt_dim
block_types = config.block_types
self.layers = [
ResidualBlock(
width=config.hidden_size,
mlp_expanded_width=config.intermediate_size,
num_heads=config.num_attention_heads,
attention_window_size=config.attention_window_size,
temporal_block_type=block_types[i % len(block_types)],
lru_width=None,
)
for i in range(config.num_hidden_layers)
]
self.final_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def __call__(
self,
tokens,
cache=None,
):
x = self.embed_tokens(tokens)
if self.scale_by_sqrt_dim:
x = x * math.sqrt(x.shape[-1])
mask = None
if x.shape[1] > 1:
mask = create_window_causal_mask(
x.shape[1], self.config.attention_window_size
)
mask = mask.astype(x.dtype)
for i, block in enumerate(self.layers):
x = block(x, mask=mask, cache=cache[i])
return self.final_norm(x)
class Model(nn.Module):
def __init__(self, config):
self.args = config
self.model = Griffin(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def __call__(self, tokens: mx.array, cache=None) -> mx.array:
"""
Args:
tokens: Sequence of input tokens.
"""
logits = self.model(tokens, cache=cache)
if "lm_head" in self:
logits = self.lm_head(logits)
else:
logits = self.model.embed_tokens.as_linear(logits)
c = self.args.logits_soft_cap
if c:
logits = mx.tanh(logits / c) * c
return logits
@property
def layers(self):
return self.model.layers
def sanitize(self, weights):
# Remove unused precomputed rotary freqs
for k, v in weights.items():
if "conv_1d.weight" in k and v.ndim == 3:
weights[k] = v.squeeze(1).T
if "lm_head.weight" not in weights:
self.pop("lm_head")
return weights
def make_cache(self):
cache = []
for layer in self.layers:
if layer.temporal_block_type == "recurrent":
cache.append(RecurrentCache())
else:
cache.append(WindowKVCache(self.args.attention_window_size))
return cache