mlx-examples/llms/phi2/phi2.py

225 lines
6.6 KiB
Python
Raw Normal View History

import glob
import inspect
import json
import math
from dataclasses import dataclass
from pathlib import Path
2023-12-14 11:22:56 +08:00
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from huggingface_hub import snapshot_download
from mlx.utils import tree_unflatten
from transformers import AutoTokenizer
2023-12-14 11:22:56 +08:00
2023-12-15 00:08:28 +08:00
2023-12-14 11:22:56 +08:00
@dataclass
class ModelArgs:
max_sequence_length: int = 2048
num_vocab: int = 51200
model_dim: int = 2560
num_heads: int = 32
num_layers: int = 32
rotary_dim: int = 32
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
2023-12-14 11:22:56 +08:00
2023-12-15 00:08:28 +08:00
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
2023-12-14 11:22:56 +08:00
class RoPEAttention(nn.Module):
2023-12-15 00:08:28 +08:00
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
2023-12-14 11:22:56 +08:00
super().__init__()
self.num_heads = num_heads
2023-12-15 00:08:28 +08:00
self.rope = nn.RoPE(rotary_dim, traditional=False)
self.Wqkv = nn.Linear(dims, 3 * dims)
2023-12-15 00:08:28 +08:00
self.out_proj = nn.Linear(dims, dims)
2023-12-14 11:22:56 +08:00
def __call__(self, x, mask=None, cache=None):
qkv = self.Wqkv(x)
queries, keys, values = mx.split(qkv, 3, axis=-1)
2023-12-14 11:22:56 +08:00
# Extract some shapes
num_heads = self.num_heads
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
2023-12-15 00:08:28 +08:00
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
2023-12-14 11:22:56 +08:00
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
2023-12-15 00:08:28 +08:00
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
2023-12-14 11:22:56 +08:00
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, dim)
self.act = nn.GELU(approx="precise")
def __call__(self, x) -> mx.array:
return self.fc2(self.act(self.fc1(x)))
2023-12-14 11:22:56 +08:00
class ParallelBlock(nn.Module):
2023-12-15 00:08:28 +08:00
def __init__(self, config: ModelArgs):
2023-12-14 11:22:56 +08:00
super().__init__()
2023-12-15 00:08:28 +08:00
dims = config.model_dim
mlp_dims = dims * 4
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
2023-12-15 00:08:28 +08:00
self.ln = LayerNorm(dims)
self.mlp = MLP(dims, mlp_dims)
2023-12-14 11:22:56 +08:00
def __call__(self, x, mask, cache):
h = self.ln(x)
attn_h, cache = self.mixer(h, mask, cache)
ff_h = self.mlp(h)
return attn_h + ff_h + x, cache
2023-12-14 11:22:56 +08:00
class TransformerDecoder(nn.Module):
2023-12-15 00:08:28 +08:00
def __init__(self, config: ModelArgs):
2023-12-14 11:22:56 +08:00
super().__init__()
self.embd = Embd(config)
2023-12-15 00:08:28 +08:00
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
2023-12-14 11:22:56 +08:00
def __call__(self, x, mask, cache):
x = self.embd(x)
if cache is None:
cache = [None] * len(self.h)
for e, layer in enumerate(self.h):
x, cache[e] = layer(x, mask, cache[e])
return x, cache
class Embd(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
def __call__(self, x):
return self.wte(x)
class OutputHead(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
2023-12-15 00:08:28 +08:00
self.ln = LayerNorm(config.model_dim)
self.linear = nn.Linear(config.model_dim, config.num_vocab)
def __call__(self, inputs):
return self.linear(self.ln(inputs))
2023-12-14 11:22:56 +08:00
class Model(nn.Module):
2023-12-14 11:22:56 +08:00
def __init__(self, config: ModelArgs):
super().__init__()
2023-12-15 00:08:28 +08:00
self.transformer = TransformerDecoder(config)
self.lm_head = OutputHead(config)
2023-12-14 11:22:56 +08:00
def __call__(
self,
x: mx.array,
mask: mx.array = None,
cache: mx.array = None,
2023-12-14 11:22:56 +08:00
) -> tuple[mx.array, mx.array]:
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(x.dtype)
2023-12-14 11:22:56 +08:00
y, cache = self.transformer(x, mask, cache)
return self.lm_head(y), cache
2023-12-14 11:22:56 +08:00
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
2023-12-14 11:22:56 +08:00
y = prompt
cache = None
while True:
logits, cache = model(y[None], cache=cache)
logits = logits[:, -1, :]
y = sample(logits)
yield y
2023-12-14 11:22:56 +08:00
def load(path_or_hf_repo: str):
# If the path exists, it will try to load model form it
# otherwise download and cache from the hf_repo and cache
model_path = Path(path_or_hf_repo)
if not model_path.exists():
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
)
with open(model_path / "config.json", "r") as f:
config = json.loads(f.read())
quantization = config.get("quantization", None)
model_args = ModelArgs.from_dict(config)
2023-12-15 00:08:28 +08:00
weight_files = glob.glob(str(model_path / "*.safetensors"))
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
2023-12-15 00:08:28 +08:00
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
2023-12-15 00:08:28 +08:00
model = Model(model_args)
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
2023-12-15 13:11:23 +08:00
model.load_weights(list(weights.items()))
2023-12-15 00:27:44 +08:00
mx.eval(model.parameters())
tokenizer = AutoTokenizer.from_pretrained(
model_path,
)
return model, tokenizer