mlx-examples/llama/README.md

46 lines
1.3 KiB
Markdown
Raw Normal View History

2023-12-13 04:48:15 +08:00
# Llama
2023-12-13 04:48:15 +08:00
An example of generating text with Llama (1 or 2) using MLX.
2023-12-13 04:48:15 +08:00
Llama is a set of open source language models from Meta AI Research[^1][^2]
ranging from 7B to 70B parameters.
### Setup
Install the dependencies:
```
pip install -r requirements.txt
```
Next, download and convert the model. If you do not have access to the model
weights you will need to [request
2023-12-13 04:48:15 +08:00
access](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
from Meta.
2023-12-13 04:48:15 +08:00
Alternatively, you can also download a select converted checkpoints from the
[mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging
Face and skip the conversion step.
2023-12-07 02:13:14 +08:00
Convert the weights with:
```
2023-12-13 04:48:15 +08:00
python convert.py --model_path <path_to_torch_model>
```
2023-12-13 04:48:15 +08:00
The conversion script will save the converted weights in the same location.
### Run
Once you've converted the weights to MLX format, you can interact with the
2023-12-13 04:48:15 +08:00
LlaMA model:
```
2023-12-13 04:48:15 +08:00
python llama.py <path_to_model> <path_to_tokenizer.model> "hello"
```
Run `python llama.py --help` for more details.
2023-12-13 04:48:15 +08:00
[^1]: For Llama v1 refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
[^2]: For Llama v2 refer to the [blob post](https://ai.meta.com/llama/)