2023-12-06 03:58:58 +08:00
|
|
|
# MLX Examples
|
2023-11-30 00:17:26 +08:00
|
|
|
|
2023-12-06 03:58:58 +08:00
|
|
|
This repo contains a variety of standalone examples using the [MLX
|
|
|
|
framework](https://github.com/ml-explore/mlx).
|
|
|
|
|
|
|
|
The [MNIST](mnist) example is a good starting point to learn how to use MLX.
|
|
|
|
|
|
|
|
Some more useful examples include:
|
|
|
|
|
|
|
|
- [Transformer language model](transformer_lm) training.
|
2023-12-15 02:10:50 +08:00
|
|
|
- Large scale text generation with [LLaMA](llama), [Mistral](mistral) or [Phi](phi2).
|
2023-12-13 08:26:13 +08:00
|
|
|
- Mixture-of-experts (MoE) language model with [Mixtral 8x7B](mixtral)
|
2023-12-06 03:58:58 +08:00
|
|
|
- Parameter efficient fine-tuning with [LoRA](lora).
|
|
|
|
- Generating images with [Stable Diffusion](stable_diffusion).
|
|
|
|
- Speech recognition with [OpenAI's Whisper](whisper).
|
2023-12-13 08:26:13 +08:00
|
|
|
- Bidirectional language understanding with [BERT](bert)
|
|
|
|
- Semi-supervised learning on graph-structured data with [GCN](gcn).
|
2023-11-30 04:31:18 +08:00
|
|
|
|
|
|
|
## Contributing
|
|
|
|
|
|
|
|
Check out the [contribution guidelines](CONTRIBUTING.md) for more information
|
|
|
|
on contributing to this repo.
|