mlx-examples/cifar/main.py

128 lines
3.8 KiB
Python
Raw Normal View History

2023-12-13 02:01:06 +08:00
import argparse
import time
from functools import partial
2023-12-13 02:01:06 +08:00
import mlx.core as mx
import mlx.nn as nn
2023-12-13 02:01:06 +08:00
import mlx.optimizers as optim
import resnet
2023-12-13 02:01:06 +08:00
from dataset import get_cifar10
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--arch",
type=str,
default="resnet20",
2023-12-15 04:09:10 +08:00
choices=[f"resnet{d}" for d in [20, 32, 44, 56, 110, 1202]],
help="model architecture",
2023-12-13 02:01:06 +08:00
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=30, help="number of epochs")
2023-12-13 02:01:06 +08:00
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
2023-12-13 02:01:06 +08:00
def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
def train_epoch(model, train_iter, optimizer, epoch):
def train_step(model, inp, tgt):
output = model(inp)
loss = mx.mean(nn.losses.cross_entropy(output, tgt))
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
return loss, acc
losses = []
accs = []
samples_per_sec = []
2023-12-13 02:01:06 +08:00
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(inp, tgt):
train_step_fn = nn.value_and_grad(model, train_step)
(loss, acc), grads = train_step_fn(model, inp, tgt)
optimizer.update(model, grads)
return loss, acc
2023-12-13 02:01:06 +08:00
for batch_counter, batch in enumerate(train_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
tic = time.perf_counter()
loss, acc = step(x, y)
mx.eval(state)
toc = time.perf_counter()
2023-12-15 04:09:10 +08:00
loss = loss.item()
acc = acc.item()
losses.append(loss)
accs.append(acc)
throughput = x.shape[0] / (toc - tic)
samples_per_sec.append(throughput)
2023-12-13 02:01:06 +08:00
if batch_counter % 10 == 0:
print(
2023-12-15 04:09:10 +08:00
" | ".join(
(
f"Epoch {epoch:02d} [{batch_counter:03d}]",
f"Train loss {loss:.3f}",
f"Train acc {acc:.3f}",
f"Throughput: {throughput:.2f} images/second",
)
)
2023-12-13 02:01:06 +08:00
)
2023-12-15 04:14:01 +08:00
mean_tr_loss = mx.mean(mx.array(losses))
mean_tr_acc = mx.mean(mx.array(accs))
samples_per_sec = mx.mean(mx.array(samples_per_sec))
return mean_tr_loss, mean_tr_acc, samples_per_sec
2023-12-13 02:01:06 +08:00
def test_epoch(model, test_iter, epoch):
accs = []
for batch_counter, batch in enumerate(test_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
acc = eval_fn(model, x, y)
acc_value = acc.item()
accs.append(acc_value)
mean_acc = mx.mean(mx.array(accs))
2023-12-13 02:01:06 +08:00
return mean_acc
def main(args):
mx.random.seed(args.seed)
2023-12-15 04:09:10 +08:00
model = getattr(resnet, args.arch)()
2023-12-13 02:01:06 +08:00
2023-12-15 04:09:10 +08:00
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6))
2023-12-13 02:01:06 +08:00
optimizer = optim.Adam(learning_rate=args.lr)
train_data, test_data = get_cifar10(args.batch_size)
2023-12-13 02:01:06 +08:00
for epoch in range(args.epochs):
2023-12-15 04:09:10 +08:00
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
2023-12-13 02:01:06 +08:00
print(
2023-12-15 04:09:10 +08:00
" | ".join(
(
f"Epoch: {epoch}",
f"avg. Train loss {tr_loss.item():.3f}",
f"avg. Train acc {tr_acc.item():.3f}",
f"Throughput: {throughput.item():.2f} images/sec",
)
)
2023-12-13 02:01:06 +08:00
)
2023-12-15 04:09:10 +08:00
test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}")
train_data.reset()
test_data.reset()
2023-12-13 02:01:06 +08:00
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu:
2023-12-13 02:01:06 +08:00
mx.set_default_device(mx.cpu)
main(args)