mlx-examples/transformer_lm/main.py

221 lines
6.9 KiB
Python
Raw Normal View History

# Copyright © 2023-2024 Apple Inc.
2023-12-01 03:08:53 +08:00
2023-11-30 00:17:26 +08:00
import math
import time
from functools import partial
2023-11-30 00:17:26 +08:00
import datasets
2023-11-30 00:17:26 +08:00
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
2023-11-30 00:17:26 +08:00
from mlx.utils import tree_flatten
class TransformerLM(nn.Module):
def __init__(
self,
vocab_size: int,
num_layers: int,
dims: int,
num_heads: int,
checkpoint: bool,
):
2023-11-30 00:17:26 +08:00
super().__init__()
self.embedding = nn.Embedding(vocab_size, dims)
self.pe = nn.SinusoidalPositionalEncoding(dims)
self.transformer = nn.TransformerEncoder(
num_layers, dims, num_heads, norm_first=True, checkpoint=checkpoint
)
2023-11-30 00:17:26 +08:00
self.out_proj = nn.Linear(dims, vocab_size)
def __call__(self, x):
L = x.shape[1]
mask = nn.MultiHeadAttention.create_additive_causal_mask(L)
2023-11-30 00:17:26 +08:00
x = self.embedding(x)
x = x + self.pe(mx.arange(L))
2023-11-30 00:17:26 +08:00
x = self.transformer(x, mask)
return self.out_proj(x)
def to_samples(context_size, dataset):
tokens = dataset.size
window_size = context_size + 1 # include target
samples = tokens - window_size + 1
X = np.lib.stride_tricks.as_strided(
dataset,
shape=(samples, window_size),
strides=(dataset.itemsize, dataset.itemsize),
)
return X[:, :-1], X[:, 1:]
def iterate_batches(batch_size, context_size, dataset):
inputs, targets = to_samples(context_size, dataset)
s = 0
while True:
if s == 0:
# Reset permutation:
perm = np.random.permutation(inputs.shape[0])
ids = perm[s : s + batch_size]
yield inputs[ids], targets[ids]
s += batch_size
if s >= inputs.shape[0]:
s = 0
def main(args):
batch_size = args.batch_size
context_size = args.context_size
steps_per_eval = args.steps_per_eval
steps_per_report = args.steps_per_report
# Load vocab and dataset:
vocab, train, valid, test = datasets.load_dataset(args.dataset)
# Initialize model:
model = TransformerLM(
len(vocab), args.num_blocks, args.dim, args.num_heads, args.checkpoint
)
2023-11-30 00:17:26 +08:00
mx.eval(model.parameters())
nparams = sum(
x.size for k, x in tree_flatten(model.parameters()) if "embedding" not in k
)
print(f"Training a transformer with {nparams / 1024**2:.3f} M parameters")
def loss_fn(model, x, y, reduce=True):
logits = model(x)
losses = nn.losses.cross_entropy(logits, y)
return mx.mean(losses) if reduce else mx.mean(losses, axis=(-1, -2))
optimizer = optim.AdamW(
learning_rate=args.learning_rate, weight_decay=args.weight_decay
)
2023-11-30 00:17:26 +08:00
def eval_fn(dataset):
2023-11-30 00:17:26 +08:00
inputs, targets = map(mx.array, to_samples(context_size, dataset))
loss = 0
for s in range(0, targets.shape[0], batch_size):
bx, by = inputs[s : s + batch_size], targets[s : s + batch_size]
bx, by = map(mx.array, (bx, by))
losses = loss(bx, by, reduce=False)
2023-11-30 00:17:26 +08:00
loss += mx.sum(losses).item()
return loss / len(targets)
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(inputs, targets):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, inputs, targets)
optimizer.update(model, grads)
return loss
2023-11-30 00:17:26 +08:00
train_iterator = iterate_batches(batch_size, context_size, train)
losses = []
tic = time.perf_counter()
for it, (inputs, targets) in zip(range(args.num_iters), train_iterator):
inputs, targets = map(mx.array, (inputs, targets))
optimizer.learning_rate = min(1, it / args.lr_warmup) * args.learning_rate
loss = step(inputs, targets)
mx.eval(state)
2023-11-30 00:17:26 +08:00
losses.append(loss.item())
if (it + 1) % steps_per_report == 0:
train_loss = np.mean(losses)
toc = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {steps_per_report / (toc - tic):.3f}"
)
losses = []
tic = time.perf_counter()
if (it + 1) % steps_per_eval == 0:
2023-12-07 00:42:23 +08:00
val_loss = eval_fn(model, valid)
2023-11-30 00:17:26 +08:00
toc = time.perf_counter()
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val ppl {math.exp(val_loss):.3f}, "
f"Val took {(toc - tic):.3f}s, "
)
tic = time.perf_counter()
if args.eval_test:
2023-12-07 00:42:23 +08:00
test_loss = eval_fn(model, test)
2023-11-30 00:17:26 +08:00
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Train a decoder-only Transformer LM with MLX.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
parser.add_argument("--seed", type=int, default=42, help="Seed for the RNGs.")
parser.add_argument(
"--dataset",
type=str,
default="ptb",
choices=["ptb", "wikitext2", "wikitext103"],
help="Dataset to train and evaluate on.",
)
parser.add_argument(
"--context_size",
type=int,
default=1024,
help="Context size in tokens of the model.",
)
parser.add_argument(
"--num_blocks", type=int, default=12, help="Number of Transformer blocks."
)
parser.add_argument(
"--dim",
type=int,
default=1024,
help="Dimensionality of embeddings and hidden layers.",
)
parser.add_argument(
"--num_heads",
type=int,
default=16,
help="Number of heads used for multi-head attention",
)
parser.add_argument(
"--checkpoint", action="store_true", help="Perform gradient checkpointing"
)
2023-11-30 00:17:26 +08:00
parser.add_argument("--batch_size", type=int, default=2, help="Minibatch size.")
parser.add_argument(
"--num_iters", type=int, default=100000, help="Iterations to train for."
)
parser.add_argument(
"--learning_rate", type=float, default=3e-4, help="SGD learning rate."
)
parser.add_argument(
"--weight_decay", type=float, default=1e-5, help="Set the weight decay"
)
parser.add_argument(
"--lr_warmup", type=int, default=200, help="LR linear warmup iterations"
2023-11-30 00:17:26 +08:00
)
parser.add_argument(
"--steps_per_report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps_per_eval",
type=int,
default=1000,
help="Number of training steps between validations.",
)
parser.add_argument(
"--eval_test",
action="store_true",
help="Evaluate on the test set after training",
)
args = parser.parse_args()
if not args.gpu:
mx.set_default_device(mx.cpu)
main(args)