mlx-examples/llms/mlx_lm/models/deepseek_v2.py

418 lines
14 KiB
Python
Raw Normal View History

# Copyright © 2023-2024 Apple Inc.
import math
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
from .switch_layers import SwitchGLU
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str = "deepseek_v2"
vocab_size: int = 102400
hidden_size: int = 4096
intermediate_size: int = 11008
moe_intermediate_size: int = 1407
num_hidden_layers: int = 30
num_attention_heads: int = 32
num_key_value_heads: int = 32
n_shared_experts: Optional[int] = None
n_routed_experts: Optional[int] = None
routed_scaling_factor: float = 1.0
kv_lora_rank: int = 512
q_lora_rank: int = 1536
qk_rope_head_dim: int = 64
v_head_dim: int = 128
qk_nope_head_dim: int = 128
topk_method: str = "gready"
n_group: Optional[int] = None
topk_group: Optional[int] = None
num_experts_per_tok: Optional[int] = None
moe_layer_freq: int = 1
first_k_dense_replace: int = 0
max_position_embeddings: int = 2048
rms_norm_eps: float = 1e-6
rope_theta: float = 10000.0
rope_scaling: Dict = None
attention_bias: bool = False
def yarn_find_correction_dim(
num_rotations, dim, base=10000, max_position_embeddings=2048
):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
2 * math.log(base)
)
def yarn_find_correction_range(
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
):
low = math.floor(
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
)
high = math.ceil(
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
)
return max(low, 0), min(high, dim - 1)
def yarn_get_mscale(scale=1, mscale=1):
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
def yarn_linear_ramp_mask(min_val, max_val, dim):
if min_val == max_val:
max_val += 0.001 # Prevent singularity
linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
return mx.clip(linear_func, 0, 1)
class DeepseekV2YarnRotaryEmbedding(nn.Module):
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
scaling_factor=1.0,
original_max_position_embeddings=4096,
beta_fast=32,
beta_slow=1,
mscale=1,
mscale_all_dim=0,
):
super().__init__()
self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
scaling_factor, mscale_all_dim
)
freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
freq_inter = scaling_factor * base ** (
mx.arange(0, dim, 2, dtype=mx.float32) / dim
)
low, high = yarn_find_correction_range(
beta_fast,
beta_slow,
dim,
base,
original_max_position_embeddings,
)
freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
self._freqs = (freq_inter * freq_extra) / (
freq_inter * freq_mask + freq_extra * (1 - freq_mask)
)
def __call__(self, x, offset=0):
if self.mscale != 1.0:
x = self.mscale * x
return mx.fast.rope(
x,
x.shape[-1],
traditional=True,
base=None,
scale=1.0,
offset=offset,
freqs=self._freqs,
)
class DeepseekV2Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.scale = self.q_head_dim**-0.5
if self.q_lora_rank is None:
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
)
else:
self.q_a_proj = nn.Linear(
self.hidden_size, self.q_lora_rank, bias=config.attention_bias
)
self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank)
self.q_b_proj = nn.Linear(
self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank)
self.kv_b_proj = nn.Linear(
self.kv_lora_rank,
self.num_heads
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=config.attention_bias,
)
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
scaling_factor = self.config.rope_scaling["factor"]
if mscale_all_dim:
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
self.scale = self.scale * mscale * mscale
rope_kwargs = {
key: self.config.rope_scaling[key]
for key in [
"original_max_position_embeddings",
"beta_fast",
"beta_slow",
"mscale",
"mscale_all_dim",
]
if key in self.config.rope_scaling
}
self.rope = DeepseekV2YarnRotaryEmbedding(
dim=self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
**rope_kwargs,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
if self.q_lora_rank is None:
q = self.q_proj(x)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
compressed_kv = self.kv_a_proj_with_mqa(x)
compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
k_pe = mx.concatenate([k_pe] * self.num_heads, axis=1)
if cache is not None:
q_pe = self.rope(q_pe, cache.offset)
k_pe = self.rope(k_pe, cache.offset)
keys, values = cache.update_and_fetch(
mx.concatenate([k_nope, k_pe], axis=-1), values
)
else:
q_pe = self.rope(q_pe)
k_pe = self.rope(k_pe)
keys = mx.concatenate([k_nope, k_pe], axis=-1)
queries = mx.concatenate([q_nope, q_pe], axis=-1)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class DeepseekV2MLP(nn.Module):
def __init__(
self, config: ModelArgs, hidden_size: int = None, intermediate_size: int = None
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = (
config.intermediate_size if intermediate_size is None else intermediate_size
)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def __call__(self, x):
down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class MoEGate(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.topk_method = config.topk_method
self.n_group = config.n_group
self.topk_group = config.topk_group
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
def __call__(self, x):
gates = x @ self.weight.T
scores = mx.softmax(gates, axis=-1, precise=True)
if self.topk_method == "group_limited_greedy":
bsz, seq_len = x.shape[:2]
scores = scores.reshape(bsz, seq_len, self.n_group, -1)
group_scores = scores.max(axis=-1)
k = self.n_group - self.topk_group
group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
scores[batch_idx, seq_idx, group_idx] = 0.0
scores = scores.reshape(bsz, seq_len, -1)
k = self.top_k
inds = mx.stop_gradient(mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k])
scores = mx.take_along_axis(scores, inds, axis=-1)
scores = scores * self.routed_scaling_factor
return inds, scores
class DeepseekV2MoE(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
self.switch_mlp = SwitchGLU(
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
)
self.gate = MoEGate(config)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV2MLP(
config=config, intermediate_size=intermediate_size
)
def __call__(self, x):
inds, scores = self.gate(x)
y = self.switch_mlp(x, inds)
y = (y * scores[..., None]).sum(axis=-2)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(x)
return y
class DeepseekV2DecoderLayer(nn.Module):
def __init__(self, config: ModelArgs, layer_idx: int):
super().__init__()
self.self_attn = DeepseekV2Attention(config)
self.mlp = (
DeepseekV2MoE(config)
if (
config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0
)
else DeepseekV2MLP(config)
)
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class DeepseekV2Model(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [
DeepseekV2DecoderLayer(config, idx)
for idx in range(config.num_hidden_layers)
]
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def __call__(
self,
x: mx.array,
cache: Optional[Any] = None,
) -> mx.array:
h = self.embed_tokens(x)
Unify attention mask in LLMs (#911) * Unify attention mask creation in LLMs. Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc code to create a mask for the attention mechanism. This usually takes the form: ``` mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) ``` This correctly creates a mask only if the input consists of more than one token. But this code assumes the multi-token input is at the beginning of inference. If, for example, we are evaluating multiple tokens because of speculative decoding or prompt cache reuse, this mask will not have the correct shape and and will cause the raising of an exception in the attention computation. Some of the models correctly implement the mask creation with code like this: ``` mask = None if h.shape[1] > 1: mask = create_additive_causal_mask( h.shape[1], cache[0].offset if cache is not None else 0 ) mask = mask.astype(h.dtype) ``` This commit unifies the attention mask creation for all models with a new function `create_attention_mask`, reducing code duplication and helping all models support inference performance enhancements like those mentioned above. * Allow batches in LLM key-value cache The current implementation of the LLM key-value cache assumes that the input batch is of size 1. Input batching (evaluating multiple alterative inputs at the same time) can be a valuable tool for speculative sampling and other techniques. This change removes the hard-coded batch size from the code that resizes the key-value cache. * Simplify causal mask creation Use the same codepath regardless of whether there's an offset or not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717). * Use old-style type annotation to avoid linter error
2024-07-26 07:45:22 +08:00
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.args = config
self.model_type = config.model_type
self.model = DeepseekV2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache: Optional[Any] = None,
):
out = self.model(inputs, cache)
return self.lm_head(out)
def sanitize(self, weights):
for l in range(self.args.num_hidden_layers):
prefix = f"model.layers.{l}"
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
for k in ["weight", "scales", "biases"]:
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
to_join = [
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
for e in range(self.args.n_routed_experts)
]
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
return weights
@property
def layers(self):
return self.model.layers