2024-08-17 06:28:39 +08:00
|
|
|
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
|
2024-07-17 22:23:28 +08:00
|
|
|
import math
|
|
|
|
from dataclasses import dataclass
|
2024-10-08 11:45:51 +08:00
|
|
|
from typing import Any, Dict, Optional, Tuple
|
2024-07-17 22:23:28 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
2024-10-08 11:45:51 +08:00
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
2024-07-17 22:23:28 +08:00
|
|
|
from .switch_layers import SwitchGLU
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
|
|
|
model_type: str = "deepseek_v2"
|
|
|
|
vocab_size: int = 102400
|
|
|
|
hidden_size: int = 4096
|
|
|
|
intermediate_size: int = 11008
|
|
|
|
moe_intermediate_size: int = 1407
|
|
|
|
num_hidden_layers: int = 30
|
|
|
|
num_attention_heads: int = 32
|
|
|
|
num_key_value_heads: int = 32
|
|
|
|
n_shared_experts: Optional[int] = None
|
|
|
|
n_routed_experts: Optional[int] = None
|
|
|
|
routed_scaling_factor: float = 1.0
|
|
|
|
kv_lora_rank: int = 512
|
|
|
|
q_lora_rank: int = 1536
|
|
|
|
qk_rope_head_dim: int = 64
|
|
|
|
v_head_dim: int = 128
|
|
|
|
qk_nope_head_dim: int = 128
|
|
|
|
topk_method: str = "gready"
|
|
|
|
n_group: Optional[int] = None
|
|
|
|
topk_group: Optional[int] = None
|
|
|
|
num_experts_per_tok: Optional[int] = None
|
|
|
|
moe_layer_freq: int = 1
|
|
|
|
first_k_dense_replace: int = 0
|
|
|
|
max_position_embeddings: int = 2048
|
|
|
|
rms_norm_eps: float = 1e-6
|
|
|
|
rope_theta: float = 10000.0
|
2024-10-08 11:45:51 +08:00
|
|
|
rope_scaling: Dict = None
|
2024-07-17 22:23:28 +08:00
|
|
|
attention_bias: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
def yarn_find_correction_dim(
|
|
|
|
num_rotations, dim, base=10000, max_position_embeddings=2048
|
|
|
|
):
|
|
|
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
|
|
|
2 * math.log(base)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def yarn_find_correction_range(
|
|
|
|
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
|
|
|
):
|
|
|
|
low = math.floor(
|
|
|
|
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
|
|
|
)
|
|
|
|
high = math.ceil(
|
|
|
|
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
|
|
|
)
|
|
|
|
return max(low, 0), min(high, dim - 1)
|
|
|
|
|
|
|
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
|
|
if scale <= 1:
|
|
|
|
return 1.0
|
|
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
|
|
|
2024-08-24 04:18:51 +08:00
|
|
|
def yarn_linear_ramp_mask(min_val, max_val, dim):
|
|
|
|
if min_val == max_val:
|
|
|
|
max_val += 0.001 # Prevent singularity
|
2024-07-17 22:23:28 +08:00
|
|
|
|
2024-08-24 04:18:51 +08:00
|
|
|
linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
|
|
|
|
return mx.clip(linear_func, 0, 1)
|
2024-07-17 22:23:28 +08:00
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2YarnRotaryEmbedding(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim,
|
|
|
|
max_position_embeddings=2048,
|
|
|
|
base=10000,
|
|
|
|
scaling_factor=1.0,
|
|
|
|
original_max_position_embeddings=4096,
|
|
|
|
beta_fast=32,
|
|
|
|
beta_slow=1,
|
|
|
|
mscale=1,
|
|
|
|
mscale_all_dim=0,
|
|
|
|
):
|
|
|
|
super().__init__()
|
2024-08-24 04:18:51 +08:00
|
|
|
self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
|
|
|
|
scaling_factor, mscale_all_dim
|
|
|
|
)
|
|
|
|
freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
|
|
|
|
freq_inter = scaling_factor * base ** (
|
|
|
|
mx.arange(0, dim, 2, dtype=mx.float32) / dim
|
2024-07-17 22:23:28 +08:00
|
|
|
)
|
|
|
|
low, high = yarn_find_correction_range(
|
2024-08-24 04:18:51 +08:00
|
|
|
beta_fast,
|
|
|
|
beta_slow,
|
2024-07-17 22:23:28 +08:00
|
|
|
dim,
|
2024-08-24 04:18:51 +08:00
|
|
|
base,
|
|
|
|
original_max_position_embeddings,
|
2024-07-17 22:23:28 +08:00
|
|
|
)
|
2024-08-24 04:18:51 +08:00
|
|
|
freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
|
|
|
|
self._freqs = (freq_inter * freq_extra) / (
|
|
|
|
freq_inter * freq_mask + freq_extra * (1 - freq_mask)
|
2024-07-17 22:23:28 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(self, x, offset=0):
|
2024-08-24 04:18:51 +08:00
|
|
|
if self.mscale != 1.0:
|
|
|
|
x = self.mscale * x
|
|
|
|
return mx.fast.rope(
|
2024-07-17 22:23:28 +08:00
|
|
|
x,
|
2024-08-24 04:18:51 +08:00
|
|
|
x.shape[-1],
|
|
|
|
traditional=True,
|
|
|
|
base=None,
|
|
|
|
scale=1.0,
|
|
|
|
offset=offset,
|
|
|
|
freqs=self._freqs,
|
2024-07-17 22:23:28 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2Attention(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.num_heads = config.num_attention_heads
|
|
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
|
|
self.rope_theta = config.rope_theta
|
|
|
|
self.q_lora_rank = config.q_lora_rank
|
|
|
|
self.qk_rope_head_dim = config.qk_rope_head_dim
|
|
|
|
self.kv_lora_rank = config.kv_lora_rank
|
|
|
|
self.v_head_dim = config.v_head_dim
|
|
|
|
self.qk_nope_head_dim = config.qk_nope_head_dim
|
|
|
|
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
|
|
|
|
|
|
|
self.scale = self.q_head_dim**-0.5
|
|
|
|
|
|
|
|
if self.q_lora_rank is None:
|
|
|
|
self.q_proj = nn.Linear(
|
|
|
|
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.q_a_proj = nn.Linear(
|
|
|
|
self.hidden_size, self.q_lora_rank, bias=config.attention_bias
|
|
|
|
)
|
|
|
|
self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank)
|
|
|
|
self.q_b_proj = nn.Linear(
|
|
|
|
self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
|
|
|
)
|
|
|
|
|
|
|
|
self.kv_a_proj_with_mqa = nn.Linear(
|
|
|
|
self.hidden_size,
|
|
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
|
|
bias=config.attention_bias,
|
|
|
|
)
|
|
|
|
self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank)
|
|
|
|
self.kv_b_proj = nn.Linear(
|
|
|
|
self.kv_lora_rank,
|
|
|
|
self.num_heads
|
|
|
|
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
|
|
|
bias=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.o_proj = nn.Linear(
|
|
|
|
self.num_heads * self.v_head_dim,
|
|
|
|
self.hidden_size,
|
|
|
|
bias=config.attention_bias,
|
|
|
|
)
|
|
|
|
|
2024-10-08 11:45:51 +08:00
|
|
|
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
|
|
|
scaling_factor = self.config.rope_scaling["factor"]
|
|
|
|
if mscale_all_dim:
|
|
|
|
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
|
|
|
self.scale = self.scale * mscale * mscale
|
2024-07-17 22:23:28 +08:00
|
|
|
|
|
|
|
rope_kwargs = {
|
|
|
|
key: self.config.rope_scaling[key]
|
|
|
|
for key in [
|
|
|
|
"original_max_position_embeddings",
|
|
|
|
"beta_fast",
|
|
|
|
"beta_slow",
|
|
|
|
"mscale",
|
|
|
|
"mscale_all_dim",
|
|
|
|
]
|
|
|
|
if key in self.config.rope_scaling
|
|
|
|
}
|
|
|
|
self.rope = DeepseekV2YarnRotaryEmbedding(
|
|
|
|
dim=self.qk_rope_head_dim,
|
|
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
|
|
scaling_factor=scaling_factor,
|
|
|
|
base=self.rope_theta,
|
|
|
|
**rope_kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-07-17 22:23:28 +08:00
|
|
|
) -> mx.array:
|
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
if self.q_lora_rank is None:
|
|
|
|
q = self.q_proj(x)
|
|
|
|
else:
|
|
|
|
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
|
|
|
|
|
|
|
|
q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
|
|
|
|
q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
|
|
|
|
compressed_kv = self.kv_a_proj_with_mqa(x)
|
|
|
|
compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
|
|
|
|
k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
|
|
|
|
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
|
|
|
kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
|
|
|
|
|
|
|
|
k_pe = mx.concatenate([k_pe] * self.num_heads, axis=1)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
q_pe = self.rope(q_pe, cache.offset)
|
|
|
|
k_pe = self.rope(k_pe, cache.offset)
|
|
|
|
keys, values = cache.update_and_fetch(
|
|
|
|
mx.concatenate([k_nope, k_pe], axis=-1), values
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
q_pe = self.rope(q_pe)
|
|
|
|
k_pe = self.rope(k_pe)
|
|
|
|
keys = mx.concatenate([k_nope, k_pe], axis=-1)
|
|
|
|
|
|
|
|
queries = mx.concatenate([q_nope, q_pe], axis=-1)
|
|
|
|
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.o_proj(output)
|
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2MLP(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, config: ModelArgs, hidden_size: int = None, intermediate_size: int = None
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
|
|
|
self.intermediate_size = (
|
|
|
|
config.intermediate_size if intermediate_size is None else intermediate_size
|
|
|
|
)
|
|
|
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
return down_proj
|
|
|
|
|
|
|
|
|
|
|
|
class MoEGate(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.top_k = config.num_experts_per_tok
|
|
|
|
self.n_routed_experts = config.n_routed_experts
|
|
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
|
|
self.topk_method = config.topk_method
|
|
|
|
self.n_group = config.n_group
|
|
|
|
self.topk_group = config.topk_group
|
|
|
|
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
gates = x @ self.weight.T
|
|
|
|
|
|
|
|
scores = mx.softmax(gates, axis=-1, precise=True)
|
|
|
|
|
|
|
|
if self.topk_method == "group_limited_greedy":
|
|
|
|
bsz, seq_len = x.shape[:2]
|
|
|
|
scores = scores.reshape(bsz, seq_len, self.n_group, -1)
|
|
|
|
group_scores = scores.max(axis=-1)
|
|
|
|
k = self.n_group - self.topk_group
|
|
|
|
group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
|
|
|
|
batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
|
|
|
|
seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
|
|
|
|
scores[batch_idx, seq_idx, group_idx] = 0.0
|
|
|
|
scores = scores.reshape(bsz, seq_len, -1)
|
|
|
|
|
|
|
|
k = self.top_k
|
|
|
|
inds = mx.stop_gradient(mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k])
|
|
|
|
scores = mx.take_along_axis(scores, inds, axis=-1)
|
|
|
|
scores = scores * self.routed_scaling_factor
|
|
|
|
|
|
|
|
return inds, scores
|
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2MoE(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.num_experts_per_tok = config.num_experts_per_tok
|
|
|
|
self.switch_mlp = SwitchGLU(
|
|
|
|
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
|
|
|
|
)
|
|
|
|
|
|
|
|
self.gate = MoEGate(config)
|
|
|
|
if config.n_shared_experts is not None:
|
|
|
|
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
|
|
self.shared_experts = DeepseekV2MLP(
|
|
|
|
config=config, intermediate_size=intermediate_size
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
inds, scores = self.gate(x)
|
|
|
|
y = self.switch_mlp(x, inds)
|
|
|
|
y = (y * scores[..., None]).sum(axis=-2)
|
|
|
|
if self.config.n_shared_experts is not None:
|
|
|
|
y = y + self.shared_experts(x)
|
|
|
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2DecoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs, layer_idx: int):
|
|
|
|
super().__init__()
|
|
|
|
self.self_attn = DeepseekV2Attention(config)
|
|
|
|
self.mlp = (
|
|
|
|
DeepseekV2MoE(config)
|
|
|
|
if (
|
|
|
|
config.n_routed_experts is not None
|
|
|
|
and layer_idx >= config.first_k_dense_replace
|
|
|
|
and layer_idx % config.moe_layer_freq == 0
|
|
|
|
)
|
|
|
|
else DeepseekV2MLP(config)
|
|
|
|
)
|
|
|
|
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
|
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-07-17 22:23:28 +08:00
|
|
|
) -> mx.array:
|
|
|
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
|
|
out = h + r
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class DeepseekV2Model(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
self.layers = [
|
|
|
|
DeepseekV2DecoderLayer(config, idx)
|
|
|
|
for idx in range(config.num_hidden_layers)
|
|
|
|
]
|
|
|
|
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-07-17 22:23:28 +08:00
|
|
|
) -> mx.array:
|
|
|
|
h = self.embed_tokens(x)
|
2024-07-26 07:45:22 +08:00
|
|
|
mask = create_attention_mask(h, cache)
|
2024-07-17 22:23:28 +08:00
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
|
|
h = layer(h, mask, c)
|
|
|
|
|
|
|
|
return self.norm(h)
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = config
|
|
|
|
self.model_type = config.model_type
|
|
|
|
self.model = DeepseekV2Model(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-07-17 22:23:28 +08:00
|
|
|
):
|
|
|
|
out = self.model(inputs, cache)
|
|
|
|
return self.lm_head(out)
|
|
|
|
|
|
|
|
def sanitize(self, weights):
|
|
|
|
for l in range(self.args.num_hidden_layers):
|
|
|
|
prefix = f"model.layers.{l}"
|
|
|
|
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
|
|
|
|
for k in ["weight", "scales", "biases"]:
|
|
|
|
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
|
|
|
|
to_join = [
|
|
|
|
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
|
|
|
|
for e in range(self.args.n_routed_experts)
|
|
|
|
]
|
|
|
|
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
|
|
|
return weights
|
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.model.layers
|