2024-08-17 06:28:39 +08:00
|
|
|
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
|
2024-05-22 11:16:31 +08:00
|
|
|
from dataclasses import dataclass
|
2024-10-08 11:45:51 +08:00
|
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
2024-05-22 11:16:31 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
import numpy as np
|
|
|
|
|
2024-07-26 07:45:22 +08:00
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
2024-05-22 11:16:31 +08:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
|
|
|
model_type: str
|
|
|
|
n_embd: int
|
|
|
|
n_layer: int
|
|
|
|
n_inner: int
|
|
|
|
n_head: int
|
|
|
|
n_positions: int
|
|
|
|
layer_norm_epsilon: float
|
|
|
|
vocab_size: int
|
|
|
|
num_key_value_heads: int = None
|
|
|
|
multi_query: bool = True
|
|
|
|
attention_bias: bool = True
|
|
|
|
mlp_bias: bool = True
|
|
|
|
tie_word_embeddings: bool = True
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.num_key_value_heads is None:
|
|
|
|
self.num_key_value_heads = 1 if self.multi_query else self.n_head
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.dim = dim = args.n_embd
|
|
|
|
self.n_heads = n_heads = args.n_head
|
|
|
|
self.n_kv_heads = n_kv_heads = 1 if args.multi_query else args.n_head
|
|
|
|
|
|
|
|
self.head_dim = head_dim = dim // n_heads
|
|
|
|
|
|
|
|
self.kv_dim = n_kv_heads * head_dim
|
|
|
|
|
|
|
|
self.scale = head_dim**-0.5
|
|
|
|
|
|
|
|
if hasattr(args, "attention_bias"):
|
|
|
|
attention_bias = args.attention_bias
|
|
|
|
else:
|
|
|
|
attention_bias = False
|
|
|
|
|
|
|
|
self.c_attn = nn.Linear(dim, dim + 2 * self.kv_dim, bias=attention_bias)
|
|
|
|
self.c_proj = nn.Linear(dim, dim, bias=attention_bias)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-05-22 11:16:31 +08:00
|
|
|
) -> mx.array:
|
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
qkv = self.c_attn(x)
|
|
|
|
queries, keys, values = mx.split(
|
|
|
|
qkv, [self.dim, self.dim + self.kv_dim], axis=-1
|
|
|
|
)
|
|
|
|
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
|
|
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.c_proj(output)
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
dim = args.n_embd
|
|
|
|
hidden_dim = args.n_inner
|
|
|
|
if hasattr(args, "mlp_bias"):
|
|
|
|
mlp_bias = args.mlp_bias
|
|
|
|
else:
|
|
|
|
mlp_bias = False
|
|
|
|
|
|
|
|
self.c_fc = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
|
|
|
self.c_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.c_proj(nn.gelu(self.c_fc(x)))
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.n_head = args.n_head
|
|
|
|
self.n_embd = args.n_embd
|
|
|
|
self.attn = Attention(args)
|
|
|
|
self.mlp = MLP(args)
|
|
|
|
self.ln_1 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
|
|
|
|
self.ln_2 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
|
|
|
|
self.args = args
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache: Optional[Any] = None,
|
2024-05-22 11:16:31 +08:00
|
|
|
) -> mx.array:
|
|
|
|
r = self.attn(self.ln_1(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.mlp(self.ln_2(h))
|
|
|
|
out = h + r
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class GPTBigCodeModel(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.vocab_size = args.vocab_size
|
|
|
|
assert self.vocab_size > 0
|
|
|
|
self.wte = nn.Embedding(args.vocab_size, args.n_embd)
|
|
|
|
self.wpe = nn.Embedding(args.n_positions, args.n_embd)
|
|
|
|
self.h = [TransformerBlock(args=args) for _ in range(args.n_layer)]
|
|
|
|
self.ln_f = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
):
|
|
|
|
B, L = inputs.shape
|
|
|
|
|
|
|
|
hidden_states = self.wte(inputs)
|
|
|
|
|
|
|
|
mask = None
|
|
|
|
if hidden_states.shape[1] > 1:
|
|
|
|
|
|
|
|
position_ids = mx.array(np.arange(L))
|
|
|
|
hidden_states += self.wpe(position_ids)
|
|
|
|
|
2024-07-26 07:45:22 +08:00
|
|
|
mask = create_attention_mask(hidden_states, cache)
|
2024-05-22 11:16:31 +08:00
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.h)
|
|
|
|
|
|
|
|
for layer, c in zip(self.h, cache):
|
|
|
|
hidden_states = layer(hidden_states, mask, cache=c)
|
|
|
|
|
|
|
|
return self.ln_f(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.model_type = args.model_type
|
|
|
|
self.transformer = GPTBigCodeModel(args)
|
|
|
|
if not args.tie_word_embeddings:
|
|
|
|
self.lm_head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
):
|
|
|
|
out = self.transformer(inputs, cache)
|
|
|
|
if self.args.tie_word_embeddings:
|
|
|
|
out = self.transformer.wte.as_linear(out)
|
|
|
|
else:
|
|
|
|
out = self.lm_head(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.transformer.h
|