mlx-examples/llms/mlx_lm/models/llama.py

306 lines
9.8 KiB
Python
Raw Normal View History

# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
head_dim: Optional[int] = None
max_position_embeddings: Optional[int] = None
num_key_value_heads: Optional[int] = None
attention_bias: bool = False
mlp_bias: bool = False
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = True
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
if not "factor" in self.rope_scaling:
raise ValueError(f"rope_scaling must contain 'factor'")
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
"rope_type"
)
if rope_type is None:
raise ValueError(
f"rope_scaling must contain either 'type' or 'rope_type'"
)
if rope_type not in ["linear", "dynamic", "llama3"]:
raise ValueError(
"rope_scaling 'type' currently only supports 'linear', 'dynamic' or 'llama3'"
)
class DynamicNTKScalingRoPE(nn.Module):
"""Implements the rotary positional encoding with Dynamic NTK scaling and Llama 3 RoPE."""
def __init__(
self,
dims: int,
max_position_embeddings: int = 2048,
traditional: bool = False,
base: float = 10000,
scale: float = 1.0,
rope_type: str = "default",
rope_scaling: dict = None,
):
super().__init__()
self.dims = dims
self.max_position_embeddings = max_position_embeddings
self.traditional = traditional
self.scale = scale
self.rope_type = rope_type
self.rope_scaling = rope_scaling
self.base = base
self.compute_freqs()
def compute_freqs(self):
if self.rope_type != "llama3":
self._freqs = None
return
factor = self.rope_scaling["factor"]
low_freq_factor = self.rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = self.rope_scaling.get("high_freq_factor", 4.0)
old_context_len = self.rope_scaling.get(
"original_max_position_embeddings",
8192,
)
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
freqs = self.base ** (mx.arange(0, self.dims, 2) / self.dims)
wavelens = 2 * mx.pi * freqs
freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs)
is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen)
smooth_factors = (old_context_len / wavelens - low_freq_factor) / (
high_freq_factor - low_freq_factor
)
smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors)
self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs)
self.base = None
def extra_repr(self):
return (
f"{self.dims}, traditional={self.traditional}, "
f"max_position_embeddings={self.max_position_embeddings}, "
f"scaling_factor={self.scale}, rope_type={self.rope_type}"
)
def __call__(self, x, offset: int = 0):
return mx.fast.rope(
x,
self.dims,
traditional=self.traditional,
base=self.base,
scale=self.scale,
offset=offset,
freqs=self._freqs,
)
def initialize_rope(args: ModelArgs):
head_dim = args.head_dim or args.hidden_size // args.num_attention_heads
rope_scaling = args.rope_scaling
rope_type = "default"
rope_scale = 1.0
if rope_scaling is not None:
rope_type = (
rope_scaling.get("type") or rope_scaling.get("rope_type") or "default"
)
if rope_type == "linear":
rope_scale = 1 / rope_scaling["factor"]
elif rope_type == "llama3":
rope_scale = 1.0 # The scaling is handled internally for llama3
return DynamicNTKScalingRoPE(
dims=head_dim,
max_position_embeddings=args.max_position_embeddings,
traditional=args.rope_traditional,
base=args.rope_theta,
scale=rope_scale,
rope_type=rope_type,
rope_scaling=rope_scaling,
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
self.scale = head_dim**-0.5
if hasattr(args, "attention_bias"):
attention_bias = args.attention_bias
else:
attention_bias = False
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
self.rope = initialize_rope(args)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
hidden_dim = args.intermediate_size
if hasattr(args, "mlp_bias"):
mlp_bias = args.mlp_bias
else:
mlp_bias = False
self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.mlp = MLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class LlamaModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
Unify attention mask in LLMs (#911) * Unify attention mask creation in LLMs. Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc code to create a mask for the attention mechanism. This usually takes the form: ``` mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) ``` This correctly creates a mask only if the input consists of more than one token. But this code assumes the multi-token input is at the beginning of inference. If, for example, we are evaluating multiple tokens because of speculative decoding or prompt cache reuse, this mask will not have the correct shape and and will cause the raising of an exception in the attention computation. Some of the models correctly implement the mask creation with code like this: ``` mask = None if h.shape[1] > 1: mask = create_additive_causal_mask( h.shape[1], cache[0].offset if cache is not None else 0 ) mask = mask.astype(h.dtype) ``` This commit unifies the attention mask creation for all models with a new function `create_attention_mask`, reducing code duplication and helping all models support inference performance enhancements like those mentioned above. * Allow batches in LLM key-value cache The current implementation of the LLM key-value cache assumes that the input batch is of size 1. Input batching (evaluating multiple alterative inputs at the same time) can be a valuable tool for speculative sampling and other techniques. This change removes the hard-coded batch size from the code that resizes the key-value cache. * Simplify causal mask creation Use the same codepath regardless of whether there's an offset or not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717). * Use old-style type annotation to avoid linter error
2024-07-26 07:45:22 +08:00
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = LlamaModel(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
2024-01-19 06:18:13 +08:00
def sanitize(self, weights):
2024-01-19 06:18:13 +08:00
# Remove unused precomputed rotary freqs
return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
}
@property
def layers(self):
return self.model.layers