2024-08-17 06:28:39 +08:00
|
|
|
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
|
2024-01-27 02:28:00 +08:00
|
|
|
import math
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
2024-07-26 07:45:22 +08:00
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
2024-02-13 02:51:02 +08:00
|
|
|
model_type: str
|
2024-01-27 02:28:00 +08:00
|
|
|
vocab_size: int
|
|
|
|
hidden_size: int
|
|
|
|
num_attention_heads: int
|
|
|
|
num_hidden_layers: int
|
|
|
|
num_key_value_heads: int
|
|
|
|
intermediate_size: int
|
|
|
|
rope_theta: float
|
|
|
|
use_qkv_bias: bool
|
2024-04-09 05:18:55 +08:00
|
|
|
partial_rotary_factor: float
|
|
|
|
layer_norm_eps: float
|
|
|
|
use_parallel_residual: bool = False
|
|
|
|
qk_layernorm: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNormPerHead(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, head_dim, num_heads, eps):
|
|
|
|
super().__init__()
|
|
|
|
self.norms = [
|
|
|
|
nn.LayerNorm(head_dim, eps=eps, bias=False) for _ in range(num_heads)
|
|
|
|
]
|
|
|
|
self.eps = eps
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
w = mx.stack([n.weight for n in self.norms])
|
|
|
|
return w * mx.fast.layer_norm(x, None, None, self.eps)
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.num_heads = config.num_attention_heads
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
|
|
self.rope_theta = config.rope_theta
|
2024-03-02 01:53:38 +08:00
|
|
|
self.partial_rotary_factor = config.partial_rotary_factor
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
|
|
raise ValueError(
|
|
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
|
|
f" and `num_heads`: {self.num_heads})."
|
|
|
|
)
|
|
|
|
|
|
|
|
self.q_proj = nn.Linear(
|
|
|
|
self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias
|
|
|
|
)
|
|
|
|
self.k_proj = nn.Linear(
|
|
|
|
self.hidden_size,
|
|
|
|
self.num_key_value_heads * self.head_dim,
|
|
|
|
bias=config.use_qkv_bias,
|
|
|
|
)
|
|
|
|
self.v_proj = nn.Linear(
|
|
|
|
self.hidden_size,
|
|
|
|
self.num_key_value_heads * self.head_dim,
|
|
|
|
bias=config.use_qkv_bias,
|
|
|
|
)
|
|
|
|
self.o_proj = nn.Linear(
|
|
|
|
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
|
|
|
)
|
|
|
|
|
|
|
|
self.rope = nn.RoPE(
|
2024-03-02 01:53:38 +08:00
|
|
|
int(self.partial_rotary_factor * self.head_dim),
|
2024-01-27 02:28:00 +08:00
|
|
|
traditional=False,
|
|
|
|
base=self.rope_theta,
|
|
|
|
)
|
|
|
|
|
2024-04-09 05:18:55 +08:00
|
|
|
self.qk_layernorm = config.qk_layernorm
|
|
|
|
if self.qk_layernorm:
|
|
|
|
self.q_layernorm = LayerNormPerHead(
|
|
|
|
self.head_dim, self.num_heads, eps=config.layer_norm_eps
|
|
|
|
)
|
|
|
|
self.k_layernorm = LayerNormPerHead(
|
|
|
|
self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps
|
|
|
|
)
|
|
|
|
|
2024-01-27 02:28:00 +08:00
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
|
|
|
|
# Extract some shapes
|
|
|
|
B, L, D = queries.shape
|
|
|
|
|
2024-04-09 05:18:55 +08:00
|
|
|
queries = queries.reshape(B, L, self.num_heads, -1)
|
|
|
|
keys = keys.reshape(B, L, self.num_key_value_heads, -1)
|
|
|
|
if self.qk_layernorm:
|
|
|
|
queries = self.q_layernorm(queries)
|
|
|
|
keys = self.k_layernorm(keys)
|
|
|
|
queries = queries.transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
2024-01-27 02:28:00 +08:00
|
|
|
0, 2, 1, 3
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add RoPE to the queries and keys and combine them with the cache
|
|
|
|
if cache is not None:
|
2024-05-08 23:18:13 +08:00
|
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
|
|
keys, values = cache.update_and_fetch(keys, values)
|
2024-01-27 02:28:00 +08:00
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
|
|
|
queries = queries.astype(mx.float32)
|
|
|
|
keys = keys.astype(mx.float32)
|
|
|
|
|
|
|
|
# Finally perform the attention computation
|
|
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
2024-03-08 09:41:23 +08:00
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=scale, mask=mask
|
|
|
|
).astype(values.dtype)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
2024-05-08 23:18:13 +08:00
|
|
|
return self.o_proj(output)
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, dim, hidden_dim):
|
|
|
|
super().__init__()
|
|
|
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
|
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.self_attn = Attention(config=config)
|
|
|
|
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
2024-03-23 22:13:51 +08:00
|
|
|
self.input_layernorm = nn.LayerNorm(
|
2024-04-09 05:18:55 +08:00
|
|
|
config.hidden_size,
|
|
|
|
eps=config.layer_norm_eps,
|
2024-01-27 02:28:00 +08:00
|
|
|
)
|
2024-04-09 05:18:55 +08:00
|
|
|
self.use_parallel_residual = config.use_parallel_residual
|
|
|
|
if not self.use_parallel_residual:
|
|
|
|
self.post_attention_layernorm = nn.LayerNorm(
|
|
|
|
config.hidden_size,
|
|
|
|
eps=config.layer_norm_eps,
|
|
|
|
)
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
def __call__(self, x, mask, cache):
|
2024-04-09 05:18:55 +08:00
|
|
|
h = self.input_layernorm(x)
|
2024-05-08 23:18:13 +08:00
|
|
|
r = self.self_attn(h, mask, cache)
|
2024-04-09 05:18:55 +08:00
|
|
|
|
|
|
|
if self.use_parallel_residual:
|
|
|
|
out = x + r + self.mlp(h)
|
|
|
|
else:
|
|
|
|
h = x + r
|
|
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
|
|
out = h + r
|
2024-05-08 23:18:13 +08:00
|
|
|
return out
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
class StableLM(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
self.layers = [DecoderLayer(config) for i in range(config.num_hidden_layers)]
|
2024-03-23 22:13:51 +08:00
|
|
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
def __call__(self, x, mask, cache):
|
|
|
|
x = self.embed_tokens(x)
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
|
2024-05-08 23:18:13 +08:00
|
|
|
for layer, c in zip(self.layers, cache):
|
|
|
|
x = layer(x, mask, cache=c)
|
|
|
|
|
|
|
|
return self.norm(x)
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, config: ModelArgs):
|
|
|
|
super().__init__()
|
2024-02-13 02:51:02 +08:00
|
|
|
self.model_type = config.model_type
|
2024-01-27 02:28:00 +08:00
|
|
|
self.model = StableLM(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
2024-05-08 23:18:13 +08:00
|
|
|
self.args = config
|
2024-01-27 02:28:00 +08:00
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: mx.array = None,
|
2024-10-08 11:45:51 +08:00
|
|
|
cache=None,
|
|
|
|
) -> mx.array:
|
2024-07-26 07:45:22 +08:00
|
|
|
mask = create_attention_mask(x, cache)
|
2024-05-08 23:18:13 +08:00
|
|
|
y = self.model(x, mask, cache)
|
|
|
|
return self.lm_head(y)
|
2024-02-20 12:37:15 +08:00
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.model.layers
|