mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
adding debug statements
This commit is contained in:
@@ -120,7 +120,7 @@ class Mamba2Mixer(nn.Module):
|
||||
self.hidden_size = args.hidden_size
|
||||
self.state_size = args.state_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.head_dim = args.hidden_size // args.num_heads
|
||||
self.n_groups = args.n_groups
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
||||
@@ -140,7 +140,6 @@ class Mamba2Mixer(nn.Module):
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.act = nn.SiLU()
|
||||
self.dt_bias = mx.ones((self.num_heads,))
|
||||
self.A_log = mx.log(mx.arange(1, self.num_heads + 1))
|
||||
self.D = mx.ones((self.num_heads,))
|
||||
@@ -149,24 +148,23 @@ class Mamba2Mixer(nn.Module):
|
||||
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
||||
|
||||
def ssm_step(self, x, state=None):
|
||||
def ssm_step(self, x, state, dt_proj):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
deltaBC = self.x_proj(x)
|
||||
delta, B, C = mx.split(
|
||||
deltaBC,
|
||||
indices_or_sections=[
|
||||
self.time_step_rank,
|
||||
self.time_step_rank + self.ssm_state_size,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
delta = nn.softplus(self.dt_proj(delta))
|
||||
new_state = mx.expand_dims(delta * x, -1) * mx.expand_dims(B, 1)
|
||||
if state is not None:
|
||||
new_state += state * mx.exp(mx.expand_dims(delta, -1) * A)
|
||||
y = (new_state @ mx.expand_dims(C, -1)).squeeze(2)
|
||||
y = y + D * x
|
||||
delta = nn.softplus(dt_proj + self.dt_bias)
|
||||
|
||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||
|
||||
B = B.reshape(-1, self.n_groups, self.state_size)
|
||||
C = C.reshape(-1, self.n_groups, self.state_size)
|
||||
|
||||
if state is None:
|
||||
new_state = mx.expand_dims(delta, -1) * B
|
||||
else:
|
||||
new_state = mx.expand_dims(delta, -1) * (B + state * mx.exp(mx.expand_dims(delta, -1) * A))
|
||||
|
||||
y = mx.sum(new_state * C, axis=-1)
|
||||
y = y + D * x[:, :self.num_heads]
|
||||
return y, new_state
|
||||
|
||||
def __call__(self, x, cache):
|
||||
@@ -178,19 +176,46 @@ class Mamba2Mixer(nn.Module):
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
xz = self.in_proj(xt)
|
||||
x_t, z_t = xz.split(indices_or_sections=2, axis=-1)
|
||||
|
||||
x_t, z_t, dt_proj = mx.split(
|
||||
xz,
|
||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
if x_t.shape[-1] != self.conv_dim:
|
||||
raise ValueError(f"Expected conv input dim {self.conv_dim}, got {x_t.shape[-1]}")
|
||||
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
||||
x_t = conv_out.squeeze(1)
|
||||
x_t = nn.silu(x_t)
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1])
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
||||
z_t = nn.silu(z_t)
|
||||
output_t = y_t * z_t
|
||||
|
||||
# Print shapes for debugging
|
||||
print(f"y_t shape: {y_t.shape}")
|
||||
print(f"z_t shape: {z_t.shape}")
|
||||
print(f"self.num_heads: {self.num_heads}")
|
||||
print(f"self.intermediate_size: {self.intermediate_size}")
|
||||
print(f"self.head_dim: {self.head_dim}")
|
||||
|
||||
# Flexible reshaping
|
||||
y_t_reshaped = y_t.reshape(B, -1, 1)
|
||||
z_t_reshaped = z_t.reshape(B, y_t_reshaped.shape[1], -1)
|
||||
|
||||
# Print reshaped shapes
|
||||
print(f"y_t_reshaped shape: {y_t_reshaped.shape}")
|
||||
print(f"z_t_reshaped shape: {z_t_reshaped.shape}")
|
||||
|
||||
# Element-wise multiplication
|
||||
output_t = y_t_reshaped * z_t_reshaped
|
||||
|
||||
# Reshape to match the expected input of out_proj
|
||||
output_t = output_t.reshape(B, self.intermediate_size)
|
||||
|
||||
print(f"output_t shape before out_proj: {output_t.shape}")
|
||||
print(f"out_proj weight shape: {self.out_proj.weight.shape}")
|
||||
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
|
||||
output = mx.stack(outputs, axis=1)
|
||||
return output
|
||||
|
||||
|
||||
Reference in New Issue
Block a user