Custom local dataset features (#1085)

* Generalize prompt_feature and completion_feature for use in local datasets to facilitate compatibility with many other training dataset formats.

* Persist configured prompt/completion key

* rebase + nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Chime Ogbuji
2025-01-13 13:01:18 -05:00
committed by GitHub
parent bf2da36fc6
commit 0228c46434
2 changed files with 56 additions and 16 deletions

View File

@@ -1,6 +1,6 @@
import json
from pathlib import Path
from typing import Dict, List
from typing import Dict, List, Optional
from transformers import PreTrainedTokenizer
@@ -61,8 +61,8 @@ class CompletionsDataset:
self,
data: List[Dict[str, str]],
tokenizer: PreTrainedTokenizer,
prompt_key: str = "prompt",
completion_key: str = "completion",
prompt_key: str,
completion_key: str,
):
self._data = [
tokenizer.apply_chat_template(
@@ -81,13 +81,19 @@ class CompletionsDataset:
return len(self._data)
def create_dataset(data, tokenizer: PreTrainedTokenizer):
def create_dataset(
data,
tokenizer: PreTrainedTokenizer,
prompt_feature: Optional[str] = None,
completion_feature: Optional[str] = None,
):
prompt_feature = prompt_feature or "prompt"
completion_feature = completion_feature or "completion"
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer)
elif "prompt" in sample and "completion" in sample:
return CompletionsDataset(data, tokenizer)
elif prompt_feature in sample and completion_feature in sample:
return CompletionsDataset(data, tokenizer, prompt_feature, completion_feature)
elif "text" in sample:
return Dataset(data, tokenizer)
else:
@@ -97,20 +103,30 @@ def create_dataset(data, tokenizer: PreTrainedTokenizer):
)
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
def load_local_dataset(
data_path: Path,
tokenizer: PreTrainedTokenizer,
prompt_feature: Optional[str] = None,
completion_feature: Optional[str] = None,
):
def load_subset(path):
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
return create_dataset(data, tokenizer)
return create_dataset(data, tokenizer, prompt_feature, completion_feature)
names = ("train", "valid", "test")
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
return train, valid, test
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
def load_hf_dataset(
data_id: str,
tokenizer: PreTrainedTokenizer,
prompt_feature: Optional[str] = None,
completion_feature: Optional[str] = None,
):
from datasets import exceptions, load_dataset
try:
@@ -119,7 +135,13 @@ def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
names = ("train", "valid", "test")
train, valid, test = [
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
(
create_dataset(
dataset[n], tokenizer, prompt_feature, completion_feature
)
if n in dataset.keys()
else []
)
for n in names
]
@@ -175,11 +197,18 @@ def load_dataset(args, tokenizer: PreTrainedTokenizer):
train, valid, test = load_custom_hf_dataset(args, tokenizer)
else:
data_path = Path(args.data)
prompt_feature = getattr(args, "prompt_feature", None)
completion_feature = getattr(args, "completion_feature", None)
if data_path.exists():
train, valid, test = load_local_dataset(data_path, tokenizer)
train, valid, test = load_local_dataset(
data_path, tokenizer, prompt_feature, completion_feature
)
else:
print(f"Loading Hugging Face dataset {args.data}.")
train, valid, test = load_hf_dataset(args.data, tokenizer)
train, valid, test = load_hf_dataset(
args.data, tokenizer, prompt_feature, completion_feature
)
if args.train and len(train) == 0:
raise ValueError(