mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
Remove async eval and add sequential load
This commit is contained in:
parent
a0ce0594f6
commit
026362e0f8
@ -191,6 +191,7 @@ def main():
|
|||||||
model_path,
|
model_path,
|
||||||
adapter_path=args.adapter_path,
|
adapter_path=args.adapter_path,
|
||||||
tokenizer_config=tokenizer_config,
|
tokenizer_config=tokenizer_config,
|
||||||
|
sequential_load=mx.distributed.init().size() > 1,
|
||||||
)
|
)
|
||||||
for eos_token in args.extra_eos_token:
|
for eos_token in args.extra_eos_token:
|
||||||
tokenizer.add_eos_token(eos_token)
|
tokenizer.add_eos_token(eos_token)
|
||||||
@ -234,13 +235,17 @@ def main():
|
|||||||
else:
|
else:
|
||||||
draft_model = None
|
draft_model = None
|
||||||
sampler = make_sampler(args.temp, args.top_p, args.min_p, args.min_tokens_to_keep)
|
sampler = make_sampler(args.temp, args.top_p, args.min_p, args.min_tokens_to_keep)
|
||||||
|
|
||||||
|
world = mx.distributed.init()
|
||||||
|
print(f"Node {world.rank()} of {world.size()}", flush=True)
|
||||||
|
world.barrier()
|
||||||
response = generate(
|
response = generate(
|
||||||
model,
|
model,
|
||||||
tokenizer,
|
tokenizer,
|
||||||
prompt,
|
prompt,
|
||||||
max_tokens=args.max_tokens,
|
max_tokens=args.max_tokens,
|
||||||
sampler=sampler,
|
sampler=sampler,
|
||||||
verbose=args.verbose and mx.distributed.init().rank() == 0,
|
verbose=args.verbose and world.rank() == 0,
|
||||||
max_kv_size=args.max_kv_size,
|
max_kv_size=args.max_kv_size,
|
||||||
prompt_cache=prompt_cache if using_cache else None,
|
prompt_cache=prompt_cache if using_cache else None,
|
||||||
kv_bits=args.kv_bits,
|
kv_bits=args.kv_bits,
|
||||||
|
@ -306,12 +306,12 @@ def generate_step(
|
|||||||
|
|
||||||
y, logprobs = _step(y)
|
y, logprobs = _step(y)
|
||||||
|
|
||||||
mx.async_eval(y, logprobs)
|
mx.eval(y, logprobs)
|
||||||
n = 0
|
n = 0
|
||||||
while True:
|
while True:
|
||||||
if n != max_tokens:
|
if n != max_tokens:
|
||||||
next_y, next_logprobs = _step(y)
|
next_y, next_logprobs = _step(y)
|
||||||
mx.async_eval(next_y, next_logprobs)
|
mx.eval(next_y, next_logprobs)
|
||||||
if n == 0:
|
if n == 0:
|
||||||
mx.eval(y)
|
mx.eval(y)
|
||||||
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
|
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
|
||||||
@ -628,6 +628,7 @@ def load_model(
|
|||||||
model_path: Path,
|
model_path: Path,
|
||||||
lazy: bool = False,
|
lazy: bool = False,
|
||||||
strict: bool = True,
|
strict: bool = True,
|
||||||
|
sequential_load: bool = False,
|
||||||
model_config: dict = {},
|
model_config: dict = {},
|
||||||
get_model_classes: Callable[[dict], Tuple[Type[nn.Module], Type]] = _get_classes,
|
get_model_classes: Callable[[dict], Tuple[Type[nn.Module], Type]] = _get_classes,
|
||||||
) -> nn.Module:
|
) -> nn.Module:
|
||||||
@ -705,6 +706,10 @@ def load_model(
|
|||||||
model.shard()
|
model.shard()
|
||||||
|
|
||||||
if not lazy:
|
if not lazy:
|
||||||
|
weights.clear()
|
||||||
|
if sequential_load:
|
||||||
|
for layer in model.layers:
|
||||||
|
mx.eval(layer.parameters())
|
||||||
mx.eval(model.parameters())
|
mx.eval(model.parameters())
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
@ -717,6 +722,7 @@ def load(
|
|||||||
model_config={},
|
model_config={},
|
||||||
adapter_path: Optional[str] = None,
|
adapter_path: Optional[str] = None,
|
||||||
lazy: bool = False,
|
lazy: bool = False,
|
||||||
|
sequential_load: bool = False,
|
||||||
) -> Tuple[nn.Module, TokenizerWrapper]:
|
) -> Tuple[nn.Module, TokenizerWrapper]:
|
||||||
"""
|
"""
|
||||||
Load the model and tokenizer from a given path or a huggingface repository.
|
Load the model and tokenizer from a given path or a huggingface repository.
|
||||||
@ -732,6 +738,8 @@ def load(
|
|||||||
lazy (bool): If ``False`` eval the model parameters to make sure they are
|
lazy (bool): If ``False`` eval the model parameters to make sure they are
|
||||||
loaded in memory before returning, otherwise they will be loaded
|
loaded in memory before returning, otherwise they will be loaded
|
||||||
when needed. Default: ``False``
|
when needed. Default: ``False``
|
||||||
|
sequential_load (bool): If True then load each layer sequentially to
|
||||||
|
ensure that we are not wasting memory.
|
||||||
Returns:
|
Returns:
|
||||||
Tuple[nn.Module, TokenizerWrapper]: A tuple containing the loaded model and tokenizer.
|
Tuple[nn.Module, TokenizerWrapper]: A tuple containing the loaded model and tokenizer.
|
||||||
|
|
||||||
@ -741,7 +749,7 @@ def load(
|
|||||||
"""
|
"""
|
||||||
model_path = get_model_path(path_or_hf_repo)
|
model_path = get_model_path(path_or_hf_repo)
|
||||||
|
|
||||||
model, config = load_model(model_path, lazy)
|
model, config = load_model(model_path, sequential_load, lazy)
|
||||||
if adapter_path is not None:
|
if adapter_path is not None:
|
||||||
model = load_adapters(model, adapter_path)
|
model = load_adapters(model, adapter_path)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
Loading…
Reference in New Issue
Block a user