mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
few more nits
This commit is contained in:
parent
98f4346c81
commit
036090f508
@ -27,10 +27,10 @@ If you do not have access to the Llama weights you will need to [request
|
||||
access](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
||||
from Meta.
|
||||
|
||||
Convert the weights with:
|
||||
Convert the model with:
|
||||
|
||||
```
|
||||
python convert.py <path_to_torch_weights> <path_to_mlx_weights.npz>
|
||||
python convert.py <path_to_torch_model> <path_to_mlx_model>
|
||||
```
|
||||
|
||||
## Run
|
||||
@ -52,7 +52,7 @@ python lora.py --model <path_to_model> \
|
||||
```
|
||||
|
||||
Note, the model path should have the MLX weights, the tokenizer, and the
|
||||
`params.json` configuration which will all be output by the `conver.py` script.
|
||||
`params.json` configuration which will all be output by the `convert.py` script.
|
||||
|
||||
By default, the adapter weights are saved in `adapters.npz`. You can specify
|
||||
the output location with `--adapter_file`.
|
||||
@ -96,8 +96,6 @@ training and validation loss at a few points over the course of training.
|
||||
| 800 | 1.017 | 1.255 |
|
||||
| 1000 | 1.070 | 1.230 |
|
||||
|
||||
After training for 1000 iterations, the validation perplexity reduces to XX.
|
||||
|
||||
The model trains at around 475 tokens per second on an M2 Ultra.
|
||||
|
||||
[^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA.
|
||||
|
@ -1,2 +1,3 @@
|
||||
mlx
|
||||
sentencepiece
|
||||
torch
|
||||
|
Loading…
Reference in New Issue
Block a user