mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
use official HF for mixtral
This commit is contained in:
@@ -17,36 +17,28 @@ brew install git-lfs
|
||||
Download the models from Hugging Face:
|
||||
|
||||
```
|
||||
git-lfs clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
|
||||
```
|
||||
|
||||
After that's done, combine the files:
|
||||
```
|
||||
cd mixtral-8x7b-32kseqlen/
|
||||
cat consolidated.00.pth-split0 consolidated.00.pth-split1 consolidated.00.pth-split2 consolidated.00.pth-split3 consolidated.00.pth-split4 consolidated.00.pth-split5 consolidated.00.pth-split6 consolidated.00.pth-split7 consolidated.00.pth-split8 consolidated.00.pth-split9 consolidated.00.pth-split10 > consolidated.00.pth
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/
|
||||
cd Mixtral-8x7B-v0.1/ && \
|
||||
git lfs pull --include "consolidated.*.pt" && \
|
||||
git lfs pull --include "tokenizer.model"
|
||||
```
|
||||
|
||||
Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
||||
MLX can read them:
|
||||
|
||||
```
|
||||
python convert.py --model_path mixtral-8x7b-32kseqlen/
|
||||
python convert.py --model_path Mixtral-8x7B-v0.1/
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
|
||||
After that's done, if you want to clean some stuff up:
|
||||
|
||||
```
|
||||
rm mixtral-8x7b-32kseqlen/*.pth*
|
||||
```
|
||||
|
||||
### Generate
|
||||
|
||||
As easy as:
|
||||
|
||||
```
|
||||
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
||||
python mixtral.py --model_path Mixtral-8x7B-v0.1/
|
||||
```
|
||||
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
[^mixtral]: Refer to Mistral's [blog
|
||||
post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
|
Reference in New Issue
Block a user