mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
use official HF for mixtral
This commit is contained in:
parent
09fff84a85
commit
078fed3d8d
@ -17,36 +17,28 @@ brew install git-lfs
|
|||||||
Download the models from Hugging Face:
|
Download the models from Hugging Face:
|
||||||
|
|
||||||
```
|
```
|
||||||
git-lfs clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/
|
||||||
```
|
cd Mixtral-8x7B-v0.1/ && \
|
||||||
|
git lfs pull --include "consolidated.*.pt" && \
|
||||||
After that's done, combine the files:
|
git lfs pull --include "tokenizer.model"
|
||||||
```
|
|
||||||
cd mixtral-8x7b-32kseqlen/
|
|
||||||
cat consolidated.00.pth-split0 consolidated.00.pth-split1 consolidated.00.pth-split2 consolidated.00.pth-split3 consolidated.00.pth-split4 consolidated.00.pth-split5 consolidated.00.pth-split6 consolidated.00.pth-split7 consolidated.00.pth-split8 consolidated.00.pth-split9 consolidated.00.pth-split10 > consolidated.00.pth
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
||||||
MLX can read them:
|
MLX can read them:
|
||||||
|
|
||||||
```
|
```
|
||||||
python convert.py --model_path mixtral-8x7b-32kseqlen/
|
python convert.py --model_path Mixtral-8x7B-v0.1/
|
||||||
```
|
```
|
||||||
|
|
||||||
The conversion script will save the converted weights in the same location.
|
The conversion script will save the converted weights in the same location.
|
||||||
|
|
||||||
After that's done, if you want to clean some stuff up:
|
|
||||||
|
|
||||||
```
|
|
||||||
rm mixtral-8x7b-32kseqlen/*.pth*
|
|
||||||
```
|
|
||||||
|
|
||||||
### Generate
|
### Generate
|
||||||
|
|
||||||
As easy as:
|
As easy as:
|
||||||
|
|
||||||
```
|
```
|
||||||
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
python mixtral.py --model_path Mixtral-8x7B-v0.1/
|
||||||
```
|
```
|
||||||
|
|
||||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
[^mixtral]: Refer to Mistral's [blog
|
||||||
|
post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||||
|
@ -1,23 +1,55 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
# Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import glob
|
||||||
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def convert(k, v, config):
|
||||||
|
v = v.to(torch.float16).numpy()
|
||||||
|
if "block_sparse_moe" not in k:
|
||||||
|
return [(k, v)]
|
||||||
|
if "gate" in k:
|
||||||
|
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
|
||||||
|
|
||||||
|
# From: layers.N.block_sparse_moe.w
|
||||||
|
# To: layers.N.experts.M.w
|
||||||
|
num_experts = args["moe"]["num_experts"]
|
||||||
|
key_path = k.split(".")
|
||||||
|
v = np.split(v, num_experts, axis=0)
|
||||||
|
if key_path[-1] == "w2":
|
||||||
|
v = [u.T for u in v]
|
||||||
|
|
||||||
|
w_name = key_path.pop()
|
||||||
|
key_path[-1] = "feed_forward.experts"
|
||||||
|
return [
|
||||||
|
(".".join(key_path + [str(e), w_name, "weight"]), u) for e, u in enumerate(v)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
|
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model_path",
|
"--model_path",
|
||||||
type=str,
|
type=str,
|
||||||
default="mixtral-8x7b-32kseqlen/",
|
default="Mixtral-8x7B-v0.1/",
|
||||||
help="The path to the Mixtral model. The MLX model weights will also be saved there.",
|
help="The path to the Mixtral model. The MLX model weights will also be saved there.",
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
model_path = Path(args.model_path)
|
model_path = Path(args.model_path)
|
||||||
state = torch.load(str(model_path / "consolidated.00.pth"))
|
|
||||||
np.savez(
|
with open("params.json") as fid:
|
||||||
str(model_path / "weights.npz"),
|
args = json.load(fid)
|
||||||
**{k: v.to(torch.float16).numpy() for k, v in state.items()},
|
|
||||||
)
|
torch_files = glob.glob(str(model_path / "consolidated.*.pt"))
|
||||||
|
torch_files = sorted(torch_files, key=lambda tf: int(tf.split(".")[-2]))
|
||||||
|
for e, tf in enumerate(torch_files):
|
||||||
|
print(f"[INFO] Converting file {e + 1}/{len(torch_files)}")
|
||||||
|
state = torch.load(tf)
|
||||||
|
new_state = {}
|
||||||
|
for k, v in state.items():
|
||||||
|
new_state.update(convert(k, v, args))
|
||||||
|
np.savez(str(model_path / f"weights.{e}.npz"), **new_state)
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
import glob
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -222,10 +223,13 @@ class Tokenizer:
|
|||||||
def load_model(folder: str, dtype=mx.float16):
|
def load_model(folder: str, dtype=mx.float16):
|
||||||
model_path = Path(folder)
|
model_path = Path(folder)
|
||||||
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
||||||
with open(model_path / "params.json", "r") as f:
|
with open("params.json", "r") as f:
|
||||||
config = json.loads(f.read())
|
config = json.loads(f.read())
|
||||||
model_args = ModelArgs(**config)
|
model_args = ModelArgs(**config)
|
||||||
weights = mx.load(str(model_path / "weights.npz"))
|
weight_files = glob.glob(str(model_path / "weights.*.npz"))
|
||||||
|
weights = {}
|
||||||
|
for wf in weight_files:
|
||||||
|
weights.update(mx.load(wf).items())
|
||||||
weights = tree_unflatten(list(weights.items()))
|
weights = tree_unflatten(list(weights.items()))
|
||||||
weights = tree_map(lambda p: p.astype(dtype), weights)
|
weights = tree_map(lambda p: p.astype(dtype), weights)
|
||||||
model = Mixtral(model_args)
|
model = Mixtral(model_args)
|
||||||
@ -255,7 +259,7 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model_path",
|
"--model_path",
|
||||||
type=str,
|
type=str,
|
||||||
default="mixtral-8x7b-32kseqlen",
|
default="Mixtral-8x7B-v0.1",
|
||||||
help="The path to the model weights, tokenizer, and config",
|
help="The path to the model weights, tokenizer, and config",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
1
mixtral/params.json
Normal file
1
mixtral/params.json
Normal file
@ -0,0 +1 @@
|
|||||||
|
{"dim": 4096, "n_layers": 32, "head_dim": 128, "hidden_dim": 14336, "n_heads": 32, "n_kv_heads": 8, "norm_eps": 1e-05, "vocab_size": 32000, "moe": {"num_experts_per_tok": 2, "num_experts": 8}}
|
Loading…
Reference in New Issue
Block a user