repetiton_penalty and logits_bias just using logits_processors (#1004)

* refactor of repetition_penalty and logits_bias to use logits_processor

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
nathan 2024-09-30 17:49:03 +02:00 committed by GitHub
parent 418d9a5511
commit 0866e23a67
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 33 additions and 35 deletions

View File

@ -101,7 +101,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path
return model_path
def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: float):
def apply_repetition_penalty(logits: mx.array, tokens: mx.array, penalty: float):
"""
Apply repetition penalty to specific logits based on the given context.
@ -109,19 +109,18 @@ def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: f
Args:
logits (mx.array): The logits produced by the language model.
generated_tokens (any): A list of N previous tokens.
tokens (mx.array): A list of N previous tokens.
penalty (float): The repetition penalty factor to be applied.
Returns:
logits (mx.array): Logits with repetition penalty applied to generated tokens.
"""
if len(generated_tokens) > 0:
indices = mx.array([token for token in generated_tokens])
selected_logits = logits[:, indices]
if len(tokens) > 0:
selected_logits = logits[:, tokens]
selected_logits = mx.where(
selected_logits < 0, selected_logits * penalty, selected_logits / penalty
)
logits[:, indices] = selected_logits
logits[:, tokens] = selected_logits
return logits
@ -158,7 +157,7 @@ def generate_step(
max_kv_size: Optional[int] = None,
cache_history: Optional[List[Tuple[mx.array, mx.array]]] = None,
logit_bias: Optional[Dict[int, float]] = None,
logits_processor: Optional[Callable[[mx.array, mx.array], mx.array]] = None,
logits_processor: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
) -> Generator[Tuple[mx.array, mx.array], None, None]:
"""
A generator producing token ids based on the given prompt from the model.
@ -182,8 +181,8 @@ def generate_step(
max_kv_size (int, optional): Maximum size of the key-value cache. Old
entries (except the first 4 tokens) will be overwritten.
logit_bias (dictionary, optional): Additive logit bias.
logits_processor (Callable[[mx.array, mx.array], mx.array], optional):
A function that takes tokens and logits and returns the processed
logits_processor (List[Callable[[mx.array, mx.array], mx.array]], optional):
A list of functions that take tokens and logits and return the processed
logits. Default: ``None``.
Yields:
@ -213,6 +212,27 @@ def generate_step(
f"repetition_penalty must be a non-negative float, got {repetition_penalty}"
)
logits_processor = logits_processor or []
if repetition_penalty:
def repetition_penalty_processor(tokens, logits):
return apply_repetition_penalty(
logits, tokens[-repetition_context_size:], repetition_penalty
)
logits_processor.append(repetition_penalty_processor)
if logit_bias:
indices = mx.array(list(logit_bias.keys()))
values = mx.array(list(logit_bias.values()))
def logit_bias_processor(_, logits):
logits[:, indices] += values
return logits
logits_processor.append(logit_bias_processor)
y = prompt
tokens = None
@ -229,40 +249,18 @@ def generate_step(
c.update_and_fetch(h[0], h[1])
mx.eval([c.state for c in cache])
repetition_context = prompt.tolist()
if repetition_context_size:
repetition_context = repetition_context[-repetition_context_size:]
if logit_bias:
indices = mx.array(list(logit_bias.keys()))
values = mx.array(list(logit_bias.values()))
def _step(y):
nonlocal repetition_context
logits = model(y[None], cache=cache)
logits = logits[:, -1, :]
if logits_processor:
nonlocal tokens
tokens = mx.concat([tokens, y]) if tokens is not None else y
logits = logits_processor(tokens, logits)
if logit_bias:
logits[:, indices] += values
for processor in logits_processor:
logits = processor(tokens, logits)
if repetition_penalty:
logits = apply_repetition_penalty(
logits, repetition_context, repetition_penalty
)
y, logprobs = sample(logits)
repetition_context.append(y.item())
else:
y, logprobs = sample(logits)
if repetition_context_size:
if len(repetition_context) > repetition_context_size:
repetition_context = repetition_context[-repetition_context_size:]
return y, logprobs.squeeze(0)
while y.size > prefill_step_size:

View File

@ -46,7 +46,7 @@ class TestGenerate(unittest.TestCase):
"hello",
max_tokens=5,
verbose=False,
logits_processor=logits_processor,
logits_processor=[logits_processor],
)
self.assertEqual(len(all_toks), len(init_toks) + 5)