From 09566c725786dcd50b67904fe229bde969693f91 Mon Sep 17 00:00:00 2001 From: Benjamin Anderson Date: Thu, 28 Dec 2023 17:20:43 -0600 Subject: [PATCH] add speculative decoding example for llama (#149) * speculative decoding * add sample 0 * spec decode gives same results as regular decode * rebase * use accept reject criteria * switch to t5 * update readme * readme nit * nits * nits * nits --------- Co-authored-by: Benjamin Anderson Co-authored-by: Awni Hannun --- llms/speculative_decoding/README.md | 66 ++++ llms/speculative_decoding/convert.py | 75 +++++ llms/speculative_decoding/decoder.py | 191 ++++++++++++ llms/speculative_decoding/main.py | 99 ++++++ llms/speculative_decoding/model.py | 341 +++++++++++++++++++++ llms/speculative_decoding/requirements.txt | 3 + t5/t5.py | 1 - 7 files changed, 775 insertions(+), 1 deletion(-) create mode 100644 llms/speculative_decoding/README.md create mode 100644 llms/speculative_decoding/convert.py create mode 100644 llms/speculative_decoding/decoder.py create mode 100644 llms/speculative_decoding/main.py create mode 100644 llms/speculative_decoding/model.py create mode 100644 llms/speculative_decoding/requirements.txt diff --git a/llms/speculative_decoding/README.md b/llms/speculative_decoding/README.md new file mode 100644 index 00000000..220265ca --- /dev/null +++ b/llms/speculative_decoding/README.md @@ -0,0 +1,66 @@ +# Speculative Decoding + +This example implements speculative decoding with the T5 model for text +generation.[^1][^2] Speculative decoding uses a smaller draft model to propose +several tokens, and a larger model to decide which tokens to accept. The +distribution of the generated text is identical to what the larger model would +produce on its own, but with far fewer forward passes of the large model since +it can evaluate the draft tokens in parallel. + +### Setup + +First, install the requirements: + +``` +cd speculative_decoding +pip install -r requirements.txt +``` + +Then convert the model and the draft model. We'll use T5-XXL (11B parameters) +for the main model. Convert it with: + +``` +python convert.py --model t5-11b +``` + +We'll use T5-small for the draft model. Convert it with: + +``` +python convert.py --model t5-small +``` + +### Run + +You can run with the default arguments: + +``` +python main.py +``` + +To see a full list of options use: +``` +python main.py --help +``` + +### Notes + +Speculative decoding works well when most of the tokens from the draft model +are accepted by the larger model. That's more likely to happen if the models +are trained on similar data. + +One way to increase the chance of accepting a draft token is with the parameter +`--delta`. This parameter can be in the range $[0, 1]$. If it is $1$ then all +the draft tokens will be accepted by the model. If it is $0$, then only draft +tokens which match the original acceptance criterion are kept.[^1] Values +closer to $1$ increase the chance that a draft token is accepted. + +Conversely, the fewer draft tokens accepted by the main model, the more +expensive speculative decoding is. You can use `--num-draft` to tune the number +of draft tokens per model evaluation in order to reduce the number of discarded +draft tokens. Decreasing `--num-draft` will decrease the number of discarded +draft tokens at the expense of more large model evaluations. + +[^1]: See the paper [Fast Inference from Transformers via Speculative +Decoding](https://arxiv.org/abs/2211.17192) +[^2]: For more information on T5 see the [original paper](https://arxiv.org/abs/1910.10683) + or the [Hugging Face page](https://huggingface.co/docs/transformers/model_doc/t5). diff --git a/llms/speculative_decoding/convert.py b/llms/speculative_decoding/convert.py new file mode 100644 index 00000000..e2108a0c --- /dev/null +++ b/llms/speculative_decoding/convert.py @@ -0,0 +1,75 @@ +import numpy as np +from transformers import T5ForConditionalGeneration + +SHARED_REPLACEMENT_PATTERNS = [ + (".block.", ".layers."), + (".k.", ".key_proj."), + (".o.", ".out_proj."), + (".q.", ".query_proj."), + (".v.", ".value_proj."), + ("shared.", "wte."), + ("lm_head.", "lm_head.linear."), + (".layer.0.layer_norm.", ".ln1."), + (".layer.1.layer_norm.", ".ln2."), + (".layer.2.layer_norm.", ".ln3."), + (".final_layer_norm.", ".ln."), + ( + "layers.0.layer.0.SelfAttention.relative_attention_bias.", + "relative_attention_bias.embeddings.", + ), +] + +ENCODER_REPLACEMENT_PATTERNS = [ + (".layer.0.SelfAttention.", ".attention."), + (".layer.1.DenseReluDense.", ".dense."), +] + +DECODER_REPLACEMENT_PATTERNS = [ + (".layer.0.SelfAttention.", ".self_attention."), + (".layer.1.EncDecAttention.", ".cross_attention."), + (".layer.2.DenseReluDense.", ".dense."), +] + + +def replace_key(key: str) -> str: + for old, new in SHARED_REPLACEMENT_PATTERNS: + key = key.replace(old, new) + if key.startswith("encoder."): + for old, new in ENCODER_REPLACEMENT_PATTERNS: + key = key.replace(old, new) + elif key.startswith("decoder."): + for old, new in DECODER_REPLACEMENT_PATTERNS: + key = key.replace(old, new) + return key + + +def convert(model_name, dtype): + dtype = getattr(np, dtype) + model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto") + weights = { + replace_key(k): v.numpy().astype(dtype) for k, v in model.state_dict().items() + } + file_name = model_name.replace("/", "-") + print(f"Saving weights to {file_name}.npz") + np.savez(f"{file_name}.npz", **weights) + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser(description="Convert T5 weights to MLX") + parser.add_argument( + "--model", + type=str, + help="Name of the T5 model.", + default="t5-small", + ) + parser.add_argument( + "--dtype", + help="The model data type.", + type=str, + choices=["float16", "float32"], + default="float32", + ) + args = parser.parse_args() + convert(args.model, args.dtype) diff --git a/llms/speculative_decoding/decoder.py b/llms/speculative_decoding/decoder.py new file mode 100644 index 00000000..838edd91 --- /dev/null +++ b/llms/speculative_decoding/decoder.py @@ -0,0 +1,191 @@ +from dataclasses import dataclass, field +from typing import List, Optional + +import mlx.core as mx +import mlx.nn as nn +import numpy as np +import transformers +from model import Model + + +class Tokenizer: + def __init__(self, model_name: str): + self._tokenizer = transformers.AutoTokenizer.from_pretrained( + model_name, + legacy=False, + model_max_length=512, + ) + self._decoder_start_id = 0 + + @property + def eos_id(self) -> int: + return self._tokenizer.eos_token_id + + @property + def decoder_start_id(self) -> int: + return self._decoder_start_id + + def encode(self, s: str) -> mx.array: + return mx.array( + self._tokenizer(s, return_tensors="np", return_attention_mask=False,)[ + "input_ids" + ].squeeze(0) + ) + + def decode(self, t: List[int]) -> str: + return self._tokenizer.decode(t) + + +class SpeculativeDecoder: + def __init__( + self, + model: Model, + draft_model: Model, + tokenizer: str, + num_draft: int = 5, + delta: float = 0.0, + ): + self.tokenizer = Tokenizer(tokenizer) + self.model = model + self.draft_model = draft_model + self.num_draft = num_draft + self.delta = delta + + def _generate( + self, + x: mx.array, + memory: mx.array, + draft: bool = False, + ): + model = self.draft_model if draft else self.model + while True: + logits = model.decode(x[None], memory)[0, -1] + x = mx.argmax(logits, keepdims=True) + lognorm = mx.logsumexp(logits.astype(mx.float32)) + logprob = logits[x] - lognorm + yield x, logprob + + def generate( + self, + prompt, + max_tokens: int = 100, + ): + memory = self.model.encode(self.tokenizer.encode(prompt)[None]) + x = mx.array([self.tokenizer.decoder_start_id]) + skip = 0 + outputs = [] + for (token, _), n in zip(self._generate(x, memory), range(max_tokens)): + if token == self.tokenizer.eos_id: + break + outputs.append(token.item()) + if (n + 1) % 10 == 0: + str_output = self.tokenizer.decode(outputs) + print(str_output[skip:], end="", flush=True) + skip = len(str_output) + + print(self.tokenizer.decode(outputs)[skip:], end="", flush=True) + print() + self.model.reset_cache() + + def _get_num_accept(self, draft_tokens, draft_probs, model_logits): + # accept_toks = mx.argmax(model_logits, axis=-1) == draft_tokens + model_probs = mx.take_along_axis( + model_logits, + draft_tokens[:, None], + axis=-1, + ).squeeze(-1) + model_probs -= mx.logsumexp(model_logits.astype(mx.float32), axis=-1) + unis = mx.random.uniform(shape=(draft_tokens.size,)) + log_unis = mx.log(mx.maximum(unis - self.delta, 0.0)) + accept_toks = log_unis <= ((model_probs - draft_probs)) + num_to_accept = (accept_toks.tolist() + [False]).index(False) + return num_to_accept + + def speculative_decode( + self, + prompt, + max_tokens: int = 100, + ): + def sample(logits): + return mx.argmax(logits, axis=-1) + + prompt = mx.array(self.tokenizer.encode(prompt), mx.uint32)[None] + memory = self.model.encode(prompt) + draft_memory = self.draft_model.encode(prompt) + + tokens = mx.array([self.tokenizer.decoder_start_id]) + + n_steps = 0 + ntoks = 0 + n_accepted = 0 + n_draft = 0 + + outputs = [] + skip = 0 + draft_inputs = tokens + inputs = tokens + while True: + # For each decoding step: generate n tokens from a draft model + draft_tokens = [] + draft_probs = [] + for _, (t, p) in zip( + range(ntoks, min(ntoks + self.num_draft, max_tokens)), + self._generate(draft_inputs, draft_memory, draft=True), + ): + draft_tokens.append(t) + draft_probs.append(p) + if t.item() == self.tokenizer.eos_id: + break + + # Verify the draft tokens with the last verified token: + draft_tokens = mx.concatenate(draft_tokens) + draft_probs = mx.concatenate(draft_probs) + verify_tokens = mx.concatenate([inputs, draft_tokens]) + logits = self.model.decode( + verify_tokens[None, :], + memory, + ).squeeze(0) + + # Only keep samples that match the draft: + num_to_accept = self._get_num_accept( + draft_tokens, + draft_probs, + logits[:-1], + ) + new_tokens = draft_tokens[:num_to_accept] + # Get the next token from the main model as well + new_tokens = mx.concatenate( + [new_tokens, mx.argmax(logits[num_to_accept], keepdims=True)] + ) + + n_accepted += num_to_accept + n_draft += draft_tokens.size + + # Rewind the cache for unaccepted tokens: + if (n := draft_tokens.size) > num_to_accept: + self.draft_model.truncate_cache(n - new_tokens.size) + self.model.truncate_cache(n - new_tokens.size + 1) + + n_steps += 1 + + for t in new_tokens.tolist(): + if t == self.tokenizer.eos_id or ntoks >= max_tokens: + break + outputs.append(t) + ntoks += 1 + + str_output = self.tokenizer.decode(outputs) + print(str_output[skip:], end="", flush=True) + skip = len(str_output) + + if ntoks >= max_tokens or new_tokens[-1] == self.tokenizer.eos_id: + break + draft_inputs = new_tokens[max(new_tokens.size - 2, 0) :] + inputs = draft_inputs[-1:] + + print(self.tokenizer.decode(outputs)[skip:], end="", flush=True) + print() + + self.model.reset_cache() + self.draft_model.reset_cache() + return {"n_accepted": n_accepted, "n_draft": n_draft, "n_steps": n_steps} diff --git a/llms/speculative_decoding/main.py b/llms/speculative_decoding/main.py new file mode 100644 index 00000000..259f1507 --- /dev/null +++ b/llms/speculative_decoding/main.py @@ -0,0 +1,99 @@ +import argparse +import glob +import json +import time +from pathlib import Path + +import mlx.core as mx +import mlx.nn as nn +from decoder import SpeculativeDecoder +from mlx.utils import tree_unflatten +from model import Model +from transformers import T5Config + + +def load_model(model_name: str): + config = T5Config.from_pretrained(model_name) + model = Model(config) + weights = mx.load(f"{model_name}.npz") + weights = tree_unflatten(list(weights.items())) + model.update(weights) + mx.eval(model.parameters()) + return model + + +def main(args): + mx.random.seed(args.seed) + + spec_decoder = SpeculativeDecoder( + model=load_model(args.model_name), + draft_model=load_model(args.draft_model_name), + tokenizer=args.model_name, + delta=args.delta, + num_draft=args.num_draft, + ) + + tic = time.time() + print(args.prompt) + if args.regular_decode: + spec_decoder.generate(args.prompt, max_tokens=args.max_tokens) + else: + stats = spec_decoder.speculative_decode(args.prompt, max_tokens=args.max_tokens) + print("=" * 10) + print(f"Accepted {stats['n_accepted']} / {stats['n_draft']}.") + print(f"Decoding steps {stats['n_steps']}.") + + toc = time.time() + print("=" * 10) + print(f"Full generation time {toc - tic:.3f}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Convert Llama weights to MLX") + parser.add_argument( + "--num-draft", + type=int, + default=5, + help="Number of draft tokens to use per decoding step.", + ) + parser.add_argument( + "--model-name", + help="Name of the model.", + default="t5-small", + ) + parser.add_argument( + "--draft-model-name", + help="Name of the draft model.", + default="t5-small", + ) + parser.add_argument( + "--seed", + type=int, + default=0, + help="PRNG seed.", + ) + parser.add_argument( + "--max-tokens", + "-m", + type=int, + default=100, + help="Maximum number of tokens to generate.", + ) + parser.add_argument( + "--prompt", + default="translate English to French: Let's go to the store and buy some groceries including eggs, avocadoes, and bread.", + help="The prompt processed by the model.", + ) + parser.add_argument( + "--delta", + type=float, + default=0.1, + help="Lenience for accepting the proposal tokens.", + ) + parser.add_argument( + "--regular-decode", + action="store_true", + help="Use regular decoding instead of speculative decoding.", + ) + args = parser.parse_args() + main(args) diff --git a/llms/speculative_decoding/model.py b/llms/speculative_decoding/model.py new file mode 100644 index 00000000..ed4a7d77 --- /dev/null +++ b/llms/speculative_decoding/model.py @@ -0,0 +1,341 @@ +from typing import List, Optional, Tuple + +import mlx.core as mx +import mlx.nn as nn +import numpy as np +from mlx.utils import tree_map, tree_unflatten +from transformers import AutoTokenizer, T5Config + + +def _relative_position_bucket( + relative_position, bidirectional=True, num_buckets=32, max_distance=128 +): + """ + Adapted from HF Tensorflow: + https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets + relative_position = mx.abs(relative_position) + else: + relative_position = -mx.minimum( + relative_position, mx.zeros_like(relative_position) + ) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + scale = (num_buckets - max_exact) / np.log(max_distance / max_exact) + relative_position_if_large = max_exact + ( + mx.log(relative_position.astype(mx.float32) / max_exact) * scale + ).astype(mx.int16) + relative_position_if_large = mx.minimum(relative_position_if_large, num_buckets - 1) + relative_buckets += mx.where( + is_small, relative_position, relative_position_if_large + ) + return relative_buckets + + +class RelativePositionBias(nn.Module): + def __init__(self, config: T5Config, bidirectional: bool): + self.bidirectional = bidirectional + self.num_buckets = config.relative_attention_num_buckets + self.max_distance = config.relative_attention_max_distance + self.n_heads = config.num_heads + self.embeddings = nn.Embedding( + config.relative_attention_num_buckets, config.num_heads + ) + + def __call__(self, query_length: int, key_length: int, offset: int = 0): + """Compute binned relative position bias""" + context_position = mx.arange(offset, query_length)[:, None] + memory_position = mx.arange(key_length)[None, :] + + # shape (query_length, key_length) + relative_position = memory_position - context_position + relative_position_bucket = _relative_position_bucket( + relative_position, + bidirectional=self.bidirectional, + num_buckets=self.num_buckets, + max_distance=self.max_distance, + ) + + # shape (query_length, key_length, num_heads) + values = self.embeddings(relative_position_bucket) + + # shape (num_heads, query_length, key_length) + return values.transpose(2, 0, 1) + + +class MultiHeadAttention(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + inner_dim = config.d_kv * config.num_heads + self.num_heads = config.num_heads + self.query_proj = nn.Linear(config.d_model, inner_dim, bias=False) + self.key_proj = nn.Linear(config.d_model, inner_dim, bias=False) + self.value_proj = nn.Linear(config.d_model, inner_dim, bias=False) + self.out_proj = nn.Linear(inner_dim, config.d_model, bias=False) + + def __call__( + self, + queries: mx.array, + keys: mx.array, + values: mx.array, + mask: Optional[mx.array], + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> [mx.array, Tuple[mx.array, mx.array]]: + queries = self.query_proj(queries) + keys = self.key_proj(keys) + values = self.value_proj(values) + + num_heads = self.num_heads + B, L, _ = queries.shape + _, S, _ = keys.shape + queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3) + + if cache is not None: + key_cache, value_cache = cache + keys = mx.concatenate([key_cache, keys], axis=2) + values = mx.concatenate([value_cache, values], axis=2) + + # Dimensions are [batch x num heads x sequence x hidden dim] + scores = queries @ keys.transpose(0, 1, 3, 2) + if mask is not None: + scores = scores + mask.astype(scores.dtype) + + scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) + values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.out_proj(values_hat), (keys, values) + + +class RMSNorm(nn.Module): + def __init__(self, dims: int, eps: float = 1e-5): + super().__init__() + self.weight = mx.ones((dims,)) + self.eps = eps + + def _norm(self, x): + return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps) + + def __call__(self, x): + t = x.dtype + output = self._norm(x).astype(t) + return self.weight * output + + +class DenseActivation(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + mlp_dims = config.d_ff or config.d_model * 4 + self.gated = config.feed_forward_proj.startswith("gated") + if self.gated: + self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False) + self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False) + else: + self.wi = nn.Linear(config.d_model, mlp_dims, bias=False) + self.wo = nn.Linear(mlp_dims, config.d_model, bias=False) + activation = config.feed_forward_proj.removeprefix("gated-") + if activation == "relu": + self.act = nn.relu + elif activation == "gelu": + self.act = nn.gelu + elif activation == "silu": + self.act = nn.silu + else: + raise ValueError(f"Unknown activation: {activation}") + + def __call__(self, x): + if self.gated: + hidden_act = self.act(self.wi_0(x)) + hidden_linear = self.wi_1(x) + x = hidden_act * hidden_linear + else: + x = self.act(self.wi(x)) + return self.wo(x) + + +class TransformerEncoderLayer(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + self.attention = MultiHeadAttention(config) + self.ln1 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.ln2 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dense = DenseActivation(config) + + def __call__(self, x, mask): + y = self.ln1(x) + y, _ = self.attention(y, y, y, mask=mask) + x = x + y + + y = self.ln2(x) + y = self.dense(y) + return x + y + + +class TransformerEncoder(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + self.layers = [ + TransformerEncoderLayer(config) for i in range(config.num_layers) + ] + self.ln = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.relative_attention_bias = RelativePositionBias(config, bidirectional=True) + + def __call__(self, x: mx.array): + pos_bias = self.relative_attention_bias(x.shape[1], x.shape[1]) + for layer in self.layers: + x = layer(x, mask=pos_bias) + return self.ln(x) + + +class TransformerDecoderLayer(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + self.self_attention = MultiHeadAttention(config) + self.cross_attention = MultiHeadAttention(config) + self.ln1 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.ln2 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.ln3 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dense = DenseActivation(config) + + def __call__( + self, + x: mx.array, + memory: mx.array, + mask: mx.array, + memory_mask: mx.array, + cache: Optional[List[Tuple[mx.array, mx.array]]] = None, + ): + y = self.ln1(x) + y, cache = self.self_attention(y, y, y, mask, cache) + x = x + y + + y = self.ln2(x) + y, _ = self.cross_attention(y, memory, memory, memory_mask) + x = x + y + + y = self.ln3(x) + y = self.dense(y) + x = x + y + + return x, cache + + +def create_additive_causal_mask(N: int, offset: int = 0): + rinds = mx.arange(offset + N) + linds = mx.arange(offset, offset + N) if offset else rinds + mask = linds[:, None] < rinds[None] + return mask * -1e9 + + +class TransformerDecoder(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + n_layers = getattr(config, "num_decoder_layers", config.num_layers) + self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)] + self.ln = RMSNorm(config.d_model, eps=config.layer_norm_epsilon) + self.relative_attention_bias = RelativePositionBias(config, bidirectional=False) + + def __call__(self, x, memory, cache=None): + if cache[0] is not None: + offset = cache[0][0].shape[2] + else: + offset = 0 + + T = x.shape[1] + if T > 1: + mask = create_additive_causal_mask(T, offset) + else: + mask = None + + pos_bias = self.relative_attention_bias(T + offset, T + offset, offset=offset) + if mask is not None: + mask += pos_bias + else: + mask = pos_bias + + for e, layer in enumerate(self.layers): + x, cache[e] = layer(x, memory, mask, None, cache=cache[e]) + x = self.ln(x) + + return x, cache + + +class OutputHead(nn.Module): + def __init__(self, config: T5Config): + self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False) + + def __call__(self, inputs): + return self.linear(inputs) + + +class Model(nn.Module): + def __init__(self, config: T5Config): + self.wte = nn.Embedding(config.vocab_size, config.d_model) + self.encoder = TransformerEncoder(config) + self.decoder = TransformerDecoder(config) + self.tie_word_embeddings = config.tie_word_embeddings + if not self.tie_word_embeddings: + self.lm_head = OutputHead(config) + self.model_dim = config.d_model + self.reset_cache() + + def encode(self, inputs: mx.array): + return self.encoder(self.wte(inputs)) + + def truncate_cache(self, num_to_truncate): + if num_to_truncate <= 0: + return + cache_length = self.cache[0][0].shape[2] + if num_to_truncate < cache_length: + self.cache = tree_map(lambda x: x[:, :, :-num_to_truncate, :], self.cache) + else: + self.reset_cache() + + def reset_cache(self): + self.cache = [None] * len(self.decoder.layers) + + def decode( + self, + inputs: mx.array, + memory: mx.array, + ): + inputs = self.wte(inputs) + y, self.cache = self.decoder(inputs, memory=memory, cache=self.cache) + if not self.tie_word_embeddings: + y *= self.model_dim**-0.5 + y = self.lm_head(y) + else: + y = y @ self.wte.weight.T + return y + + def __call__( + self, + inputs: mx.array, + decoder_inputs: mx.array, + ): + return self.decode(decoder_inputs, self.encode(inputs))[0] diff --git a/llms/speculative_decoding/requirements.txt b/llms/speculative_decoding/requirements.txt new file mode 100644 index 00000000..501c713c --- /dev/null +++ b/llms/speculative_decoding/requirements.txt @@ -0,0 +1,3 @@ +mlx>=0.0.6 +transformers +numpy diff --git a/t5/t5.py b/t5/t5.py index 2acd39b4..3812393c 100644 --- a/t5/t5.py +++ b/t5/t5.py @@ -125,7 +125,6 @@ class MultiHeadAttention(nn.Module): values = mx.concatenate([value_cache, values], axis=2) # Dimensions are [batch x num heads x sequence x hidden dim] - queries = queries scores = queries @ keys if mask is not None: scores = scores + mask.astype(scores.dtype)