mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-16 16:18:08 +08:00
updates
This commit is contained in:
@@ -1,50 +1,66 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
class ORPODataset:
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Dict[str, str]],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_key: str = "prompt",
|
||||
chosen_key: str = "chosen",
|
||||
rejected_key: str = "rejected",
|
||||
preference_score_key: str = "preference_score"
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Dict[str, Union[str, Dict]]],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_key: str = "prompt",
|
||||
chosen_key: str = "chosen",
|
||||
rejected_key: str = "rejected",
|
||||
preference_score_key: str = "preference_score",
|
||||
system_key: str = None
|
||||
):
|
||||
self._chosen_data = []
|
||||
self._rejected_data = []
|
||||
self._scores = []
|
||||
|
||||
|
||||
for d in data:
|
||||
chosen_text = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[chosen_key]},
|
||||
])
|
||||
rejected_text = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[rejected_key]},
|
||||
])
|
||||
|
||||
if system_key and system_key in d:
|
||||
base_messages = [{"role": "system", "content": d[system_key]}]
|
||||
chosen_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
|
||||
if isinstance(d[chosen_key], str):
|
||||
chosen_messages.append({"role": "assistant", "content": d[chosen_key]})
|
||||
else:
|
||||
chosen_messages.extend(d[chosen_key]["messages"])
|
||||
rejected_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
|
||||
if isinstance(d[rejected_key], str):
|
||||
rejected_messages.append({"role": "assistant", "content": d[rejected_key]})
|
||||
else:
|
||||
rejected_messages.extend(d[rejected_key]["messages"])
|
||||
chosen_text = tokenizer.apply_chat_template(chosen_messages)
|
||||
rejected_text = tokenizer.apply_chat_template(rejected_messages)
|
||||
else:
|
||||
chosen_text = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[chosen_key] if isinstance(d[chosen_key], str) else d[chosen_key]["messages"][-1]["content"]},
|
||||
])
|
||||
rejected_text = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[rejected_key] if isinstance(d[rejected_key], str) else d[rejected_key]["messages"][-1]["content"]},
|
||||
])
|
||||
|
||||
self._chosen_data.append(chosen_text)
|
||||
self._rejected_data.append(rejected_text)
|
||||
|
||||
|
||||
if preference_score_key in d:
|
||||
self._scores.append(float(d[preference_score_key]))
|
||||
else:
|
||||
self._scores.append(1.0)
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
return {
|
||||
"chosen": self._chosen_data[idx],
|
||||
"rejected": self._rejected_data[idx],
|
||||
"preference_score": self._scores[idx]
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self._chosen_data)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._chosen_data)
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
return {
|
||||
"chosen": self._chosen_data[idx],
|
||||
"rejected": self._rejected_data[idx],
|
||||
"preference_score": self._scores[idx]
|
||||
}
|
||||
|
||||
|
||||
class Dataset:
|
||||
|
@@ -40,7 +40,7 @@ def orpo_loss(model, chosen, rejected, chosen_masks, rejected_masks, chosen_rewa
|
||||
loss = -beta * ratio
|
||||
|
||||
accuracies = (log_odds > 0).astype(mx.float32)
|
||||
margins = mx.mean(ratio)
|
||||
margins = mx.mean(ratio - 1)
|
||||
metrics = {
|
||||
'accuracies': mx.mean(accuracies),
|
||||
'margins': margins,
|
||||
@@ -107,9 +107,9 @@ def iterate_orpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=F
|
||||
rejected_masks = np.zeros((batch_size // step, max_length_in_batch), np.float32)
|
||||
|
||||
# Get preference scores and convert to rewards
|
||||
preference_scores = np.array([x.get('preference_score', 1.0) for x in batch], np.float32)
|
||||
chosen_rewards = preference_scores
|
||||
rejected_rewards = 1.0 - preference_scores
|
||||
preference_scores = [x.get('preference_score', 1.0) for x in batch]
|
||||
chosen_rewards = np.array(preference_scores, np.float32)
|
||||
rejected_rewards = np.array([1.0 - score for score in preference_scores], np.float32)
|
||||
|
||||
for j in range(batch_size // step):
|
||||
# Use pre-tokenized sequences directly
|
||||
|
Reference in New Issue
Block a user