This commit is contained in:
Goekdeniz-Guelmez
2025-01-24 16:57:18 +01:00
parent e3688293ed
commit 09ed837896
3 changed files with 88 additions and 81 deletions

View File

@@ -1,50 +1,66 @@
import json
from pathlib import Path
from typing import Dict, List, Optional
from typing import Dict, List, Optional, Union
from transformers import PreTrainedTokenizer
class ORPODataset:
def __init__(
self,
data: List[Dict[str, str]],
tokenizer: PreTrainedTokenizer,
prompt_key: str = "prompt",
chosen_key: str = "chosen",
rejected_key: str = "rejected",
preference_score_key: str = "preference_score"
):
def __init__(
self,
data: List[Dict[str, Union[str, Dict]]],
tokenizer: PreTrainedTokenizer,
prompt_key: str = "prompt",
chosen_key: str = "chosen",
rejected_key: str = "rejected",
preference_score_key: str = "preference_score",
system_key: str = None
):
self._chosen_data = []
self._rejected_data = []
self._scores = []
for d in data:
chosen_text = tokenizer.apply_chat_template([
{"role": "user", "content": d[prompt_key]},
{"role": "assistant", "content": d[chosen_key]},
])
rejected_text = tokenizer.apply_chat_template([
{"role": "user", "content": d[prompt_key]},
{"role": "assistant", "content": d[rejected_key]},
])
if system_key and system_key in d:
base_messages = [{"role": "system", "content": d[system_key]}]
chosen_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
if isinstance(d[chosen_key], str):
chosen_messages.append({"role": "assistant", "content": d[chosen_key]})
else:
chosen_messages.extend(d[chosen_key]["messages"])
rejected_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
if isinstance(d[rejected_key], str):
rejected_messages.append({"role": "assistant", "content": d[rejected_key]})
else:
rejected_messages.extend(d[rejected_key]["messages"])
chosen_text = tokenizer.apply_chat_template(chosen_messages)
rejected_text = tokenizer.apply_chat_template(rejected_messages)
else:
chosen_text = tokenizer.apply_chat_template([
{"role": "user", "content": d[prompt_key]},
{"role": "assistant", "content": d[chosen_key] if isinstance(d[chosen_key], str) else d[chosen_key]["messages"][-1]["content"]},
])
rejected_text = tokenizer.apply_chat_template([
{"role": "user", "content": d[prompt_key]},
{"role": "assistant", "content": d[rejected_key] if isinstance(d[rejected_key], str) else d[rejected_key]["messages"][-1]["content"]},
])
self._chosen_data.append(chosen_text)
self._rejected_data.append(rejected_text)
if preference_score_key in d:
self._scores.append(float(d[preference_score_key]))
else:
self._scores.append(1.0)
def __getitem__(self, idx: int):
return {
"chosen": self._chosen_data[idx],
"rejected": self._rejected_data[idx],
"preference_score": self._scores[idx]
}
def __len__(self):
return len(self._chosen_data)
def __len__(self):
return len(self._chosen_data)
def __getitem__(self, idx: int):
return {
"chosen": self._chosen_data[idx],
"rejected": self._rejected_data[idx],
"preference_score": self._scores[idx]
}
class Dataset:

View File

@@ -40,7 +40,7 @@ def orpo_loss(model, chosen, rejected, chosen_masks, rejected_masks, chosen_rewa
loss = -beta * ratio
accuracies = (log_odds > 0).astype(mx.float32)
margins = mx.mean(ratio)
margins = mx.mean(ratio - 1)
metrics = {
'accuracies': mx.mean(accuracies),
'margins': margins,
@@ -107,9 +107,9 @@ def iterate_orpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=F
rejected_masks = np.zeros((batch_size // step, max_length_in_batch), np.float32)
# Get preference scores and convert to rewards
preference_scores = np.array([x.get('preference_score', 1.0) for x in batch], np.float32)
chosen_rewards = preference_scores
rejected_rewards = 1.0 - preference_scores
preference_scores = [x.get('preference_score', 1.0) for x in batch]
chosen_rewards = np.array(preference_scores, np.float32)
rejected_rewards = np.array([1.0 - score for score in preference_scores], np.float32)
for j in range(batch_size // step):
# Use pre-tokenized sequences directly