fix cache handling

This commit is contained in:
Goekdeniz-Guelmez 2025-02-05 08:44:06 +01:00
parent 7b0141455e
commit 0a09a93454

View File

@ -36,41 +36,6 @@ class GRPOTrainingArgs(TrainingArgs):
)
def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
if len(prompt.shape) == 1:
prompt = prompt[None, :]
generated = []
current_prompt = prompt[0]
for _ in range(max_tokens):
current_batch = current_prompt[None, :]
logits = model(current_batch)
token_logits = logits[0, -1]
if temperature > 0:
token_logits = token_logits / temperature
probs = mx.softmax(token_logits)
next_token = mx.random.categorical(probs[None, :])
next_token = next_token[0]
mx.eval(next_token)
token_value = next_token.item()
generated.append(next_token)
current_prompt = mx.concatenate([current_prompt, next_token[None]])
if token_value == tokenizer.eos_token_id:
break
if not generated:
return prompt[0]
result = mx.concatenate([prompt[0], mx.stack(generated)])
mx.eval(result)
return result
def r1_extract_xml_answer(text: str) -> str:
"""Extracts the answer from an XML formatted text string."""
try:
@ -154,9 +119,48 @@ def r1_count_xml(prompts: list, completions: list, answer: list, **kwargs) -> li
return scores
def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
if len(prompt.shape) == 1:
prompt = prompt[None, :]
if prompt.shape[1] == 0:
return None
output = mx.zeros((prompt.shape[1] + max_tokens,), dtype=mx.int32)
output[:prompt.shape[1]] = prompt[0]
current_length = prompt.shape[1]
try:
for _ in range(max_tokens):
current_input = output[:current_length][None, :]
logits = model(current_input)
token_logits = logits[0, -1]
if temperature > 0:
token_logits /= temperature
probs = mx.softmax(token_logits)
next_token = mx.random.categorical(probs[None, :]).astype(mx.int32)
next_token = next_token[0]
token_value = next_token.item()
output[current_length] = token_value
current_length += 1
if token_value == tokenizer.eos_token_id:
break
if current_length > prompt.shape[1]:
result = output[:current_length]
return result
except Exception as e:
print(f"Generation error: {str(e)}")
return None
return None
def get_per_token_logps(model, inputs, lengths):
# Get logits from model
logits = model(inputs).astype(mx.float32) # [batch_size, seq_len, vocab_size]
logits = model(inputs).astype(mx.float16) # [batch_size, seq_len, vocab_size]
# Remove last position as it corresponds to the next token prediction
logits = logits[:, :-1, :] # [batch_size, seq_len-1, vocab_size]
targets = inputs[:, 1:] # Shift inputs to get targets
@ -182,6 +186,7 @@ def get_per_token_logps(model, inputs, lengths):
).squeeze(-1) # [seq_len]
per_token_logps.append(token_log_probs)
mx.eval(logits)
return per_token_logps
@ -204,22 +209,26 @@ def grpo_loss(
all_completions = []
all_completion_texts = []
for prompt in prompt_tokens:
prompt_tensor = mx.array(prompt)
for _ in range(group_size):
try:
completion_ids = generate_grpo(model, prompt_tensor, max_tokens, tokenizer, temperature)
if completion_ids is None:
for i in range(0, batch_size, batch_size):
batch_prompts = prompt_tokens[i:i+batch_size]
for prompt in batch_prompts:
prompt_tensor = mx.array(prompt)
for _ in range(group_size):
try:
completion_ids = generate_grpo(model, prompt_tensor, max_tokens, tokenizer, temperature)
if completion_ids is not None:
completion_text = tokenizer.decode(completion_ids.tolist())
all_completions.append(completion_ids)
all_completion_texts.append(completion_text)
# Clear completion tensors
mx.eval(completion_ids)
del completion_ids
except Exception as e:
print(f"Generation error: {e}")
continue
completion_text = tokenizer.decode(completion_ids.tolist())
all_completions.append(completion_ids)
all_completion_texts.append(completion_text)
except Exception as e:
print(f"Generation error: {e}")
continue
mx.metal.clear_cache()
# Prepare inputs
expanded_answers = []
@ -250,6 +259,10 @@ def grpo_loss(
# Current policy probabilities
token_log_probs = get_per_token_logps(model, inputs, lengths)
mx.eval(token_log_probs)
mx.metal.clear_cache()
# Reference policy probabilities
if ref_model is not None:
@ -263,7 +276,7 @@ def grpo_loss(
for i in range(len(token_log_probs)):
seq_len = token_log_probs[i].shape[0]
padding = mx.zeros((max_len - seq_len,), dtype=mx.float32)
padding = mx.zeros((max_len - seq_len,), dtype=mx.float16)
padded_log_probs.append(mx.concatenate([token_log_probs[i], padding]))
padded_ref_log_probs.append(mx.concatenate([ref_token_log_probs[i], padding]))
@ -330,6 +343,7 @@ def grpo_loss(
'kl': mean_kl,
**reward_metrics
}
mx.metal.clear_cache()
return loss, sequence_lengths.sum(), metrics