update: using einsum on som elines making it faster, but still generates Gibberish on Codestral

This commit is contained in:
Goekdeniz-Guelmez 2024-12-18 19:32:22 +01:00
parent 7996a6f4fd
commit 0ae536c423

View File

@ -135,17 +135,15 @@ class Mamba2Block(nn.Module):
batch_size, seq_len, _ = u.shape
# Project input
proj = self.in_proj(u) # [batch, seq_len, d_in_proj]
proj = self.in_proj(u)
# Calculate split indices and slice tensors
# Split projections
z = proj[..., :self.d_inner]
x_conv = proj[..., self.d_inner:self.d_inner + (self.d_inner + 2 * self.n_groups * self.d_state)]
dt = proj[..., -self.n_heads:]
# Process time steps
# Process time steps - simplified to match PyTorch
dt = nn.softplus(dt + self.dt_bias)
dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max)
dt = mx.maximum(dt, self.args.time_step_floor)
# Convolution and activation
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
@ -158,27 +156,19 @@ class Mamba2Block(nn.Module):
B = x_conv[..., self.d_inner:self.d_inner + self.d_state]
C = x_conv[..., -self.d_state:]
# Reshape x for SSM
# Reshape for SSM processing
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
# Process B and C without reshaping heads
B = mx.expand_dims(B, axis=2) # [batch, seq_len, 1, d_state]
B = mx.broadcast_to(B, (batch_size, seq_len, self.n_heads, self.d_state))
C = mx.expand_dims(C, axis=2) # [batch, seq_len, 1, d_state]
C = mx.broadcast_to(C, (batch_size, seq_len, self.n_heads, self.d_state))
# Initialize or get previous state
# Initialize state
if cache and cache[1] is not None:
prev_state = cache[1]
else:
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
# Compute dA
dA = -mx.exp(self.A_log) # [n_heads]
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads)) # Ensure correct shape
dA = mx.exp(mx.expand_dims(dt * mx.expand_dims(dA, 0), -1)) # [batch, seq_len, n_heads, 1]
dA = mx.expand_dims(dA, -1) # [batch, seq_len, n_heads, 1, 1]
# Compute dA - simplified to match PyTorch
A = -mx.exp(self.A_log)
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
# Process sequence
next_state = prev_state
@ -189,23 +179,19 @@ class Mamba2Block(nn.Module):
xt = x[:, t] # [batch, n_heads, d_head]
Bt = B[:, t] # [batch, n_heads, d_state]
Ct = C[:, t] # [batch, n_heads, d_state]
dAt = dA[:, t] # [batch, n_heads, 1, 1]
dAt = dA[:, t] # [batch, n_heads]
# Update state
# Compute dBx using einsum to match PyTorch
dBx = mx.einsum('bh,bn,bhp->bhpn', dAt, Bt, xt)
# Update state - matches PyTorch implementation
next_state = (
next_state * dAt + # Broadcasting: [batch, n_heads, d_head, d_state] * [batch, n_heads, 1, 1]
mx.matmul(
mx.expand_dims(xt, -1), # [batch, n_heads, d_head, 1]
mx.expand_dims(Bt, -2) # [batch, n_heads, 1, d_state]
)
next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
dBx
)
# Compute output
yt = mx.matmul(
next_state, # [batch, n_heads, d_head, d_state]
mx.expand_dims(Ct, -1) # [batch, n_heads, d_state, 1]
)
yt = mx.squeeze(yt, -1) # [batch, n_heads, d_head]
yt = mx.einsum('bhpn,bn->bhp', next_state, Ct)
yt = yt + xt * mx.expand_dims(self.D, -1)
# Reshape and normalize