mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-21 02:51:13 +08:00
update: using einsum on som elines making it faster, but still generates Gibberish on Codestral
This commit is contained in:
parent
7996a6f4fd
commit
0ae536c423
@ -135,17 +135,15 @@ class Mamba2Block(nn.Module):
|
||||
batch_size, seq_len, _ = u.shape
|
||||
|
||||
# Project input
|
||||
proj = self.in_proj(u) # [batch, seq_len, d_in_proj]
|
||||
proj = self.in_proj(u)
|
||||
|
||||
# Calculate split indices and slice tensors
|
||||
# Split projections
|
||||
z = proj[..., :self.d_inner]
|
||||
x_conv = proj[..., self.d_inner:self.d_inner + (self.d_inner + 2 * self.n_groups * self.d_state)]
|
||||
dt = proj[..., -self.n_heads:]
|
||||
|
||||
# Process time steps
|
||||
# Process time steps - simplified to match PyTorch
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
# Convolution and activation
|
||||
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
|
||||
@ -158,27 +156,19 @@ class Mamba2Block(nn.Module):
|
||||
B = x_conv[..., self.d_inner:self.d_inner + self.d_state]
|
||||
C = x_conv[..., -self.d_state:]
|
||||
|
||||
# Reshape x for SSM
|
||||
# Reshape for SSM processing
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||
|
||||
# Process B and C without reshaping heads
|
||||
B = mx.expand_dims(B, axis=2) # [batch, seq_len, 1, d_state]
|
||||
B = mx.broadcast_to(B, (batch_size, seq_len, self.n_heads, self.d_state))
|
||||
|
||||
C = mx.expand_dims(C, axis=2) # [batch, seq_len, 1, d_state]
|
||||
C = mx.broadcast_to(C, (batch_size, seq_len, self.n_heads, self.d_state))
|
||||
|
||||
# Initialize or get previous state
|
||||
# Initialize state
|
||||
if cache and cache[1] is not None:
|
||||
prev_state = cache[1]
|
||||
else:
|
||||
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
||||
|
||||
# Compute dA
|
||||
dA = -mx.exp(self.A_log) # [n_heads]
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads)) # Ensure correct shape
|
||||
dA = mx.exp(mx.expand_dims(dt * mx.expand_dims(dA, 0), -1)) # [batch, seq_len, n_heads, 1]
|
||||
dA = mx.expand_dims(dA, -1) # [batch, seq_len, n_heads, 1, 1]
|
||||
# Compute dA - simplified to match PyTorch
|
||||
A = -mx.exp(self.A_log)
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||
|
||||
# Process sequence
|
||||
next_state = prev_state
|
||||
@ -186,26 +176,22 @@ class Mamba2Block(nn.Module):
|
||||
|
||||
for t in range(seq_len):
|
||||
# Get current step tensors
|
||||
xt = x[:, t] # [batch, n_heads, d_head]
|
||||
Bt = B[:, t] # [batch, n_heads, d_state]
|
||||
Ct = C[:, t] # [batch, n_heads, d_state]
|
||||
dAt = dA[:, t] # [batch, n_heads, 1, 1]
|
||||
xt = x[:, t] # [batch, n_heads, d_head]
|
||||
Bt = B[:, t] # [batch, n_heads, d_state]
|
||||
Ct = C[:, t] # [batch, n_heads, d_state]
|
||||
dAt = dA[:, t] # [batch, n_heads]
|
||||
|
||||
# Update state
|
||||
# Compute dBx using einsum to match PyTorch
|
||||
dBx = mx.einsum('bh,bn,bhp->bhpn', dAt, Bt, xt)
|
||||
|
||||
# Update state - matches PyTorch implementation
|
||||
next_state = (
|
||||
next_state * dAt + # Broadcasting: [batch, n_heads, d_head, d_state] * [batch, n_heads, 1, 1]
|
||||
mx.matmul(
|
||||
mx.expand_dims(xt, -1), # [batch, n_heads, d_head, 1]
|
||||
mx.expand_dims(Bt, -2) # [batch, n_heads, 1, d_state]
|
||||
)
|
||||
next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
|
||||
dBx
|
||||
)
|
||||
|
||||
# Compute output
|
||||
yt = mx.matmul(
|
||||
next_state, # [batch, n_heads, d_head, d_state]
|
||||
mx.expand_dims(Ct, -1) # [batch, n_heads, d_state, 1]
|
||||
)
|
||||
yt = mx.squeeze(yt, -1) # [batch, n_heads, d_head]
|
||||
yt = mx.einsum('bhpn,bn->bhp', next_state, Ct)
|
||||
yt = yt + xt * mx.expand_dims(self.D, -1)
|
||||
|
||||
# Reshape and normalize
|
||||
|
Loading…
Reference in New Issue
Block a user