Add StableLM-2 1.6B (#378)

* init

* stablelm

* add to readme

* bump version

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Ashish 2024-01-26 11:28:00 -07:00 committed by GitHub
parent 854ad8747a
commit 0b57f0eae6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 191 additions and 2 deletions

View File

@ -117,6 +117,7 @@ Here are a few examples of Hugging Face models that work with this example:
- [Qwen/Qwen-7B](https://huggingface.co/Qwen/Qwen-7B)
- [pfnet/plamo-13b](https://huggingface.co/pfnet/plamo-13b)
- [pfnet/plamo-13b-instruct](https://huggingface.co/pfnet/plamo-13b-instruct)
- [stabilityai/stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b)
Most
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),

View File

@ -0,0 +1,187 @@
import math
from dataclasses import dataclass
from typing import Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
max_position_embeddings: int
vocab_size: int
hidden_size: int
num_attention_heads: int
num_hidden_layers: int
num_key_value_heads: int
rope_pct: float
intermediate_size: int
norm_eps: float
rope_theta: float
use_qkv_bias: bool
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.repeats = self.num_heads // self.num_key_value_heads
self.rope_theta = config.rope_theta
self.rope_pct = config.rope_pct
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias
)
self.k_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.use_qkv_bias,
)
self.v_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.use_qkv_bias,
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self.rope = nn.RoPE(
int(self.rope_pct * self.head_dim),
traditional=False,
base=self.rope_theta,
)
def __call__(self, x, mask=None, cache=None):
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Extract some shapes
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.num_heads, self.head_dim).transpose(
0, 2, 1, 3
)
keys = keys.reshape(B, L, self.num_key_value_heads, self.head_dim).transpose(
0, 2, 1, 3
)
values = values.reshape(
B, L, self.num_key_value_heads, self.head_dim
).transpose(0, 2, 1, 3)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.num_heads, L, -1])
if self.repeats > 1:
keys, values = map(repeat, (keys, values))
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(values_hat), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.self_attn = Attention(config=config)
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.norm_eps)
self.mlp = MLP(config.hidden_size, config.intermediate_size)
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.norm_eps)
self.post_attention_layernorm = LayerNorm(
config.hidden_size, eps=config.norm_eps
)
def __call__(self, x, mask, cache):
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out, cache
class StableLM(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [DecoderLayer(config) for i in range(config.num_hidden_layers)]
self.norm = LayerNorm(config.hidden_size, eps=config.norm_eps)
def __call__(self, x, mask, cache):
x = self.embed_tokens(x)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
x, cache[e] = layer(x, mask, cache[e])
return self.norm(x), cache
class Model(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.model = StableLM(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def __call__(
self,
x: mx.array,
mask: mx.array = None,
cache: mx.array = None,
) -> Tuple[mx.array, mx.array]:
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(x.dtype)
y, cache = self.model(x, mask, cache)
return self.lm_head(y), cache

View File

@ -12,7 +12,7 @@ from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
# Local imports
from .models import llama, mixtral, phi2, plamo, qwen
from .models import llama, mixtral, phi2, plamo, qwen, stablelm_epoch
from .tuner.utils import apply_lora_layers
# Constants
@ -21,6 +21,7 @@ MODEL_MAPPING = {
"mistral": llama, # mistral is compatible with llama
"mixtral": mixtral,
"phi": phi2,
"stablelm_epoch": stablelm_epoch,
"qwen": qwen,
"plamo": plamo,
}

View File

@ -8,7 +8,7 @@ with open(Path(__file__).parent / "mlx_lm/requirements.txt") as fid:
requirements = [str(r) for r in pkg_resources.parse_requirements(fid)]
setup(
name="mlx-lm",
version="0.0.4",
version="0.0.6",
description="LLMs on Apple silicon with MLX and the Hugging Face Hub",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",