From 0e026e6a77ad4b514ead832762269280e7ecf98d Mon Sep 17 00:00:00 2001
From: Pawel Kowalski
Date: Wed, 13 Dec 2023 23:36:47 +0100
Subject: [PATCH] moved the weight squeeze to map_unet_weights, style check
---
stable_diffusion/stable_diffusion/model_io.py | 27 +++++++------------
1 file changed, 10 insertions(+), 17 deletions(-)
diff --git a/stable_diffusion/stable_diffusion/model_io.py b/stable_diffusion/stable_diffusion/model_io.py
index f9c9af65..349e5d76 100644
--- a/stable_diffusion/stable_diffusion/model_io.py
+++ b/stable_diffusion/stable_diffusion/model_io.py
@@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
from safetensors import safe_open as safetensor_open
import mlx.core as mx
-from mlx.utils import tree_unflatten, tree_flatten
+from mlx.utils import tree_unflatten
from .clip import CLIPTextModel
from .config import UNetConfig, CLIPTextModelConfig, AutoencoderConfig, DiffusionConfig
@@ -31,7 +31,7 @@ _MODELS = {
"tokenizer_vocab": "tokenizer/vocab.json",
"tokenizer_merges": "tokenizer/merges.txt",
},
- "nitrosocke/Ghibli-Diffusion": {
+ "nitrosocke/Ghibli-Diffusion": {
"unet_config": "unet/config.json",
"unet": "unet/diffusion_pytorch_model.safetensors",
"text_encoder_config": "text_encoder/config.json",
@@ -41,7 +41,7 @@ _MODELS = {
"diffusion_config": "scheduler/scheduler_config.json",
"tokenizer_vocab": "tokenizer/vocab.json",
"tokenizer_merges": "tokenizer/merges.txt",
- }
+ },
}
@@ -87,6 +87,10 @@ def map_unet_weights(key, value):
if "conv_shortcut.weight" in key:
value = value.squeeze()
+ # Transform the weights from 1x1 convs to linear
+ if len(value.shape) == 4 and ("proj_in" in key or "proj_out" in key):
+ value = value.squeeze()
+
if len(value.shape) == 4:
value = value.transpose(0, 2, 3, 1)
@@ -165,23 +169,10 @@ def _flatten(params):
return [(k, v) for p in params for (k, v) in p]
-def _match_shapes(model, weights):
- #check whether the safetensor weights have the same shape as the model, if not reshape them
- weight_shapes = {x[0]:x[1].shape for x in weights if isinstance(x[1], mx.array)}
- arrays_model_shapes = {x[0]:x[1].shape for x in tree_flatten(model) if isinstance(x[1], mx.array)}
- mismatched_keys = [k for k in weight_shapes if weight_shapes[k]!= arrays_model_shapes.get(k, weight_shapes[k])]
- weights_dict = dict(weights)
- for k in mismatched_keys:
- weights_dict[k] = weights_dict[k].reshape(arrays_model_shapes[k])
- weights = list(weights_dict.items())
- return weights
-
-
def _load_safetensor_weights(mapper, model, weight_file, float16: bool = False):
dtype = np.float16 if float16 else np.float32
with safetensor_open(weight_file, framework="numpy") as f:
weights = _flatten([mapper(k, f.get_tensor(k).astype(dtype)) for k in f.keys()])
- weights = _match_shapes(model, weights)
model.update(tree_unflatten(weights))
@@ -208,7 +199,9 @@ def load_unet(key: str = _DEFAULT_MODEL, float16: bool = False):
out_channels=config["out_channels"],
block_out_channels=config["block_out_channels"],
layers_per_block=[config["layers_per_block"]] * n_blocks,
- num_attention_heads=[config["attention_head_dim"]] * n_blocks if isinstance(config["attention_head_dim"], int) else config["attention_head_dim"],
+ num_attention_heads=[config["attention_head_dim"]] * n_blocks
+ if isinstance(config["attention_head_dim"], int)
+ else config["attention_head_dim"],
cross_attention_dim=[config["cross_attention_dim"]] * n_blocks,
norm_num_groups=config["norm_num_groups"],
)